These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19162705)

  • 41. Glass-type wireless PPG measuring system.
    Lee EM; Shin JY; Hong JH; Cha EJ; Lee TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1433-6. PubMed ID: 21096350
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Telltale Heartbeat: Heart-Rate Monitors are Taking New Shapes.
    Grifantini K
    IEEE Pulse; 2016; 7(1):35-8. PubMed ID: 26799726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improved signal quality indication for photoplethysmographic signals incorporating motion artifact detection.
    Pflugradt M; Orglmeister R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1872-5. PubMed ID: 25570343
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoplethysmographic measurements from the esophagus using a new fiber-optic reflectance sensor.
    Phillips JP; Langford RM; Chang SH; Kyriacou PA; Jones DP
    J Biomed Opt; 2011 Jul; 16(7):077005. PubMed ID: 21806285
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation.
    Budidha K; Kyriacou PA
    Physiol Meas; 2014 Feb; 35(2):111-28. PubMed ID: 24399082
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization and reduction of motion artifacts in photoplethysmographic signals from a wrist-worn device.
    Tăuţan AM; Young A; Wentink E; Wieringa F
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6146-9. PubMed ID: 26737695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of photoplethysmography and arterial blood oxygen saturation from the ear-canal and the finger under conditions of artificially induced hypothermia.
    Budidha K; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():7954-7. PubMed ID: 26738137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nine degree of freedom motion estimation for wrist PPG heart rate measurements.
    Galvez AV; Casson AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3231-3234. PubMed ID: 31946574
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Study of Artifact-Resistive Technology Based on a Novel Dual Photoplethysmography Method for Wearable Pulse Rate Monitors.
    Zhou C; Feng J; Hu J; Ye X
    J Med Syst; 2016 Mar; 40(3):56. PubMed ID: 26645320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Research on an anti-motion interference algorithm of blood oxygen saturation based on AC and DC analysis.
    Yan J; Bin G
    Technol Health Care; 2015; 23 Suppl 2():S285-91. PubMed ID: 26410494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry.
    Lee B; Han J; Baek HJ; Shin JH; Park KS; Yi WJ
    Physiol Meas; 2010 Dec; 31(12):1585-603. PubMed ID: 20980715
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reflectance forehead pulse oximetry: effects of contact pressure during walking.
    Dresher RP; Mendelson Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3529-32. PubMed ID: 17946185
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reducing motion artifacts in photoplethysmograms by using relative sensor motion: phantom study.
    Wijshoff RW; Mischi M; Veen J; van der Lee AM; Aarts RM
    J Biomed Opt; 2012 Nov; 17(11):117007. PubMed ID: 23192359
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Early experience with a novel ambulatory monitor.
    Russell JK; Gehman S
    J Electrocardiol; 2007; 40(6 Suppl):S160-4. PubMed ID: 17993315
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Novel Photoplethysmography Sensor for Vital Signs Monitoring from the Human Trachea.
    May JM; Phillips JP; Fitchat T; Ramaswamy S; Snidvongs S; Kyriacou PA
    Biosensors (Basel); 2019 Oct; 9(4):. PubMed ID: 31581652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Motion artifact cancellation and outlier rejection for clip-type ppg-based heart rate sensor.
    Shimazaki T; Hara S; Okuhata H; Nakamura H; Kawabata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2026-9. PubMed ID: 26736684
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fast prototype of a wireless cardiac rhythm interpretive instrument.
    Wong KI; Ho MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():502-5. PubMed ID: 19162703
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lightweight physiologic sensor performance during pre-hospital care delivered by ambulance clinicians.
    Mort AJ; Fitzpatrick D; Wilson PM; Mellish C; Schneider A
    J Clin Monit Comput; 2016 Feb; 30(1):23-32. PubMed ID: 25804608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of a test system for fast time response fibre optic oxygen sensors.
    Saied A; Edgington L; Gale L; Palayiwa E; Belcher R; Farmery AD; Chen R; Hahn CE
    Physiol Meas; 2010 Apr; 31(4):N25-33. PubMed ID: 20208094
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.