These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19162731)

  • 1. A real-time virtual integration environment for the design and development of neural prosthetic systems.
    Bishop W; Armiger R; Burck J; Bridges M; Hauschild M; Englehart K; Scheme E; Vogelstein RJ; Beaty J; Harshbarger S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():615-9. PubMed ID: 19162731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of a virtual integration environment for the real-time implementation of neural decode algorithms.
    Bishop W; Yu BM; Santhanam G; Afshar A; Ryu SI; Shenoy KV; Vogelstein RJ; Beaty J; Harshbarger S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():628-33. PubMed ID: 19162734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.
    Zumsteg ZS; Kemere C; O'Driscoll S; Santhanam G; Ahmed RE; Shenoy KV; Meng TH
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):272-9. PubMed ID: 16200751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An embedded controller for a 7-degree of freedom prosthetic arm.
    Tenore F; Armiger RS; Vogelstein RJ; Wenstrand DS; Harshbarger SD; Englehart K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():185-8. PubMed ID: 19162624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A virtual reality environment for designing and fitting neural prosthetic limbs.
    Hauschild M; Davoodi R; Loeb GE
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):9-15. PubMed ID: 17436870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implantable bi-directional brain-machine interface system for chronic neuroprosthesis research.
    Stanslaski S; Cong P; Carlson D; Santa W; Jensen R; Molnar G; Marks WJ; Shafquat A; Denison T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5494-7. PubMed ID: 19965049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A reconfigurable neural signal processor (NSP) for brain machine interfaces.
    Darmanjian S; Cieslewski G; Morrison S; Dang B; Gugel K; Principe J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2502-5. PubMed ID: 17946962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon microsystems for neuroscience and neural prostheses.
    Wise KD
    IEEE Eng Med Biol Mag; 2005; 24(5):22-9. PubMed ID: 16248114
    [No Abstract]   [Full Text] [Related]  

  • 9. Smart life support: model-based design and control of life-supporting systems.
    Leonhardt S; Hexamer M; Simanski O
    Biomed Tech (Berl); 2009 Oct; 54(5):229-31. PubMed ID: 19807286
    [No Abstract]   [Full Text] [Related]  

  • 10. Control architecture for human-robot integration: application to a robotic wheelchair.
    Galindo C; Gonzalez J; Fernández-Madrigal JA
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An inductive tongue computer interface for control of computers and assistive devices.
    Struijk LN
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 2):2594-7. PubMed ID: 17152438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implantable biomedical microsystems for neural prostheses.
    Stieglitz T; Schuettler M; Koch KP
    IEEE Eng Med Biol Mag; 2005; 24(5):58-65. PubMed ID: 16248118
    [No Abstract]   [Full Text] [Related]  

  • 13. Real-time decision fusion for multimodal neural prosthetic devices.
    White JR; Levy T; Bishop W; Beaty JD
    PLoS One; 2010 Mar; 5(3):e9493. PubMed ID: 20209151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Walking with WALK! A cooperative, patient-driven neuroprosthetic system.
    Fuhr T; Quintern J; Riener R; Schmidt G
    IEEE Eng Med Biol Mag; 2008; 27(1):38-48. PubMed ID: 18270049
    [No Abstract]   [Full Text] [Related]  

  • 15. Using a virtual integration environment in treating phantom limb pain.
    Zeher MJ; Armiger RS; Burck JM; Moran C; Kiely JB; Weeks SR; Tsao JW; Pasquina PF; Davoodi R; Loeb G
    Stud Health Technol Inform; 2011; 163():730-6. PubMed ID: 21335889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards closed-loop decoding of dexterous hand movements using a virtual integration environment.
    Aggarwal V; Singhal G; He J; Schieber MH; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1703-6. PubMed ID: 19163007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asynchronous brain machine interface-based control of a wheelchair.
    Hema CR; Paulraj MP; Yaacob S; Adom AH; Nagarajan R
    Adv Exp Med Biol; 2011; 696():565-72. PubMed ID: 21431597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video game interfaces for interactive lower and upper member therapy.
    Uribe-Quevedo A; Perez-Gutierrez B; Alves S
    Stud Health Technol Inform; 2013; 184():465-7. PubMed ID: 23400203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical stimulation as therapy for neurological disorder.
    Testerman RL; Rise MT; Stypulkowski PH
    IEEE Eng Med Biol Mag; 2006; 25(5):74-8. PubMed ID: 17020202
    [No Abstract]   [Full Text] [Related]  

  • 20. A new virtual environment for testing and hardware implementation of closed-loop control algorithms in the artificial pancreas.
    León-Vargas F; Prados G; Bondia J; Vehí J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():385-8. PubMed ID: 22254329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.