These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19162738)

  • 1. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.
    Zhao M; Rattanatamrong P; DiGiovanna J; Mahmoudi B; Figueiredo RJ; Sanchez JC; Príncipe JC; Fortes JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():646-9. PubMed ID: 19162738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A reconfigurable neural signal processor (NSP) for brain machine interfaces.
    Darmanjian S; Cieslewski G; Morrison S; Dang B; Gugel K; Principe J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2502-5. PubMed ID: 17946962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model development, testing and experimentation in a CyberWorkstation for Brain-Machine Interface research.
    Rattanatamrong P; Matsunaga A; Raiturkar P; Mesa D; Zhao M; Mahmoudi B; Digiovanna J; Principe J; Figueiredo R; Sanchez J; Fortes J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4339-42. PubMed ID: 21096000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training of a leaning agent for navigation--inspired by brain-machine interface.
    Kitamura T; Nishino D
    IEEE Trans Syst Man Cybern B Cybern; 2006 Apr; 36(2):353-65. PubMed ID: 16602595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
    Kansaku K; Hata N; Takano K
    Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open Ephys electroencephalography (Open Ephys  +  EEG): a modular, low-cost, open-source solution to human neural recording.
    Black C; Voigts J; Agrawal U; Ladow M; Santoyo J; Moore C; Jones S
    J Neural Eng; 2017 Jun; 14(3):035002. PubMed ID: 28266930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an optical brain-machine interface.
    Utsugi K; Obata A; Sato H; Katsura T; Sagara K; Maki A; Koizumi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5338-41. PubMed ID: 18003213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Denoising of multiscale/multiresolution structural feature dictionaries for rapid training of a brain computer interface.
    Ince NF; Tadipatri VA; Göksu F; Tewfik AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():21-4. PubMed ID: 19965103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The body-machine interface: a pathway for rehabilitation and assistance in people with movement disorders.
    Mussa-Ivaldi FA; Casadio M; Ranganathan R
    Expert Rev Med Devices; 2013 Mar; 10(2):145-7. PubMed ID: 23480080
    [No Abstract]   [Full Text] [Related]  

  • 13. Craniux: a LabVIEW-based modular software framework for brain-machine interface research.
    Degenhart AD; Kelly JW; Ashmore RC; Collinger JL; Tyler-Kabara EC; Weber DJ; Wang W
    Comput Intell Neurosci; 2011; 2011():363565. PubMed ID: 21687575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BCI2000: a general-purpose brain-computer interface (BCI) system.
    Schalk G; McFarland DJ; Hinterberger T; Birbaumer N; Wolpaw JR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1034-43. PubMed ID: 15188875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined optimization of spatial and temporal filters for improving brain-computer interfacing.
    Dornhege G; Blankertz B; Krauledat M; Losch F; Curio G; Müller KR
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2274-81. PubMed ID: 17073333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Strathclyde brain computer interface.
    Valsan G; Grychtol B; Lakany H; Conway BA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():606-9. PubMed ID: 19963973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BCI meeting 2005--workshop on technology: hardware and software.
    Cincotti F; Bianchi L; Birch G; Guger C; Mellinger J; Scherer R; Schmidt RN; Yáñez Suárez O; Schalk G
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):128-31. PubMed ID: 16792276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. xDAWN algorithm to enhance evoked potentials: application to brain-computer interface.
    Rivet B; Souloumiac A; Attina V; Gibert G
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2035-43. PubMed ID: 19174332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Embodying cultured networks with a robotic drawing arm.
    Bakkum DJ; Chao ZC; Gamblen P; Ben-Ary G; Shkolnik AG; DeMarse TB; Potter SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2996-9. PubMed ID: 18002625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Actor-Critic architecture and simulator for goal-directed Brain-Machine Interfaces.
    Mahmoudi B; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3365-8. PubMed ID: 19963795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.