These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19162771)

  • 1. Design of an intelligent and personalised shunting system for hydrocephalus.
    Momani L; Alkharabsheh AR; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():779-82. PubMed ID: 19162771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electronic implant for Hydrocephalus therapy assistance.
    Jetzki S; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():715-8. PubMed ID: 19162755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An expert system for hydrocephalus patient feedback.
    Alkharabsheh AR; Momani L; Al-Zu'bi N; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1166-9. PubMed ID: 21095908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent shunt agent for gradual shunt removal.
    Al-Zubi N; Al-Kharabsheh A; Momani L; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():430-3. PubMed ID: 21096764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of an electromechanical hydrocephalus shunt--a new approach.
    Elixmann IM; Kwiecien M; Goffin C; Walter M; Misgeld B; Kiefer M; Steudel WI; Radermacher K; Leonhardt S
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2379-88. PubMed ID: 25148657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Instantiating a mechatronic valve schedule for a hydrocephalus shunt.
    Momani L; Alkharabsheh AR; Al-Zuibi N; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():749-52. PubMed ID: 19963474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciding on Appropriate Telemetric Intracranial Pressure Monitoring System.
    Norager NH; Lilja-Cyron A; Hansen TS; Juhler M
    World Neurosurg; 2019 Jun; 126():564-569. PubMed ID: 30898734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. External re-programmation by a new radionuclidic technique of electronic cerebrospinal fluid valve in case of hydrocephalus.
    Zissimopoulos A; Birbilis T; Cassimos D; Deftereos S; Karathanos E; Chatzimichael A; Prassopoulos P
    Hell J Nucl Med; 2009; 12(3):244-7. PubMed ID: 19936336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Index of cerebrospinal compensatory reserve in hydrocephalus.
    Kim DJ; Czosnyka Z; Keong N; Radolovich DK; Smielewski P; Sutcliffe MP; Pickard JD; Czosnyka M
    Neurosurgery; 2009 Mar; 64(3):494-501; discussion 501-2. PubMed ID: 19240611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechatronic valve in the management of hydrocephalus: methods and performance.
    Momani L; Al-Nuaimy W; Al-Jumaily M; Mallucci C
    Med Biol Eng Comput; 2011 Jan; 49(1):121-32. PubMed ID: 21174160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical testing of CSF circulation in hydrocephalus.
    Czosnyka Z; Czosnyka M; Owler B; Momjian S; Kasprowicz M; Schmidt EA; Smielewski P; Pickard JD
    Acta Neurochir Suppl; 2005; 95():247-51. PubMed ID: 16463858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A telemetric pressure sensor for ventricular shunt systems.
    Cosman ER; Zervas NT; Chapman PH; Cosman BJ; Arnold MA
    Surg Neurol; 1979 Apr; 11(4):287-94. PubMed ID: 441915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart orthopedic implants.
    Burny F; Donkerwolcke M
    Orthopedics; 2005 Dec; 28(12):1401-2. PubMed ID: 16366076
    [No Abstract]   [Full Text] [Related]  

  • 17. [Limits of various methods for evaluation of shunt function and development of new intracranial pressure meter incorporated in the shunt system (author's transl)].
    Osaka K; Ohta T
    No Shinkei Geka; 1980 Sep; 8(9):811-7. PubMed ID: 7432594
    [No Abstract]   [Full Text] [Related]  

  • 18. The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus.
    Reinprecht A; Dietrich W; Bertalanffy A; Czech T
    Childs Nerv Syst; 1997; 13(11-12):588-93; discussion 593-4. PubMed ID: 9454974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracranial Pressure Sensor and Valve to Control Hydrocephalus.
    Webster JG; Iskandar B; Medow J; Luzzio C; Zhang X; Guan C; Yang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-7. PubMed ID: 30440275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel method for controlling cerebrospinal fluid flow and intracranial pressure by use of a tandem shunt valve system.
    Aihara Y; Kawamata T; Mitsuyama T; Hori T; Okada Y
    Pediatr Neurosurg; 2010; 46(1):12-8. PubMed ID: 20453558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.