BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 19162778)

  • 1. In vivo volumetric blood flow imaging using optical microangiography at capillary level resolution.
    Wang RK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():804. PubMed ID: 19162778
    [No Abstract]   [Full Text] [Related]  

  • 2. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo.
    Wang RK; An L
    Opt Express; 2009 May; 17(11):8926-40. PubMed ID: 19466142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring cerebral hemodynamics following optogenetic stimulation via optical coherence tomography.
    Atry F; Frye S; Richner TJ; Brodnick SK; Soehartono A; Williams J; Pashaie R
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):766-73. PubMed ID: 25373076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional optical micro-angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo.
    Wang RK
    Phys Med Biol; 2007 Dec; 52(23):N531-7. PubMed ID: 18029974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capturing the vital vascular fingerprint with optical coherence tomography.
    Liu G; Chen Z
    Appl Opt; 2013 Aug; 52(22):5473-7. PubMed ID: 23913068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography.
    An L; Subhush HM; Wilson DJ; Wang RK
    J Biomed Opt; 2010; 15(2):026011. PubMed ID: 20459256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intervolume analysis to achieve four-dimensional optical microangiography for observation of dynamic blood flow.
    Wei W; Xu J; Baran U; Song S; Qin W; Qi X; Wang RK
    J Biomed Opt; 2016 Mar; 21(3):36005. PubMed ID: 26968387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical coherence tomography angiography-based capillary velocimetry.
    Wang RK; Zhang Q; Li Y; Song S
    J Biomed Opt; 2017 Jun; 22(6):66008. PubMed ID: 28617921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary flow homogenization during functional activation revealed by optical coherence tomography angiography based capillary velocimetry.
    Li Y; Wei W; Wang RK
    Sci Rep; 2018 Mar; 8(1):4107. PubMed ID: 29515156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly accurate thermal flow microsensor for continuous and quantitative measurement of cerebral blood flow.
    Li C; Wu PM; Wu Z; Limnuson K; Mehan N; Mozayan C; Golanov EV; Ahn CH; Hartings JA; Narayan RK
    Biomed Microdevices; 2015 Oct; 17(5):87. PubMed ID: 26256480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.
    Lee J; Wu W; Lesage F; Boas DA
    J Cereb Blood Flow Metab; 2013 Nov; 33(11):1707-10. PubMed ID: 24022621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo photoacoustic flowmetry at depths of the diffusive regime based on saline injection.
    Zhou Y; Poudel J; Li G; Wang LV
    J Biomed Opt; 2015 Aug; 20(8):87001. PubMed ID: 26267364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capillary blood flow imaging within human finger cuticle using optical microangiography.
    Baran U; Shi L; Wang RK
    J Biophotonics; 2015 Jan; 8(1-2):46-51. PubMed ID: 25590582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation.
    Nan N; Wang X; Bu P; Li Z; Guo X; Chen Y; Wang X; Yuan F; Sasaki O
    Appl Opt; 2014 Apr; 53(12):2669-76. PubMed ID: 24787594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography.
    Wang RK; An L; Francis P; Wilson DJ
    Opt Lett; 2010 May; 35(9):1467-9. PubMed ID: 20436605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells.
    Erdener ŞE; Tang J; Sajjadi A; Kılıç K; Kura S; Schaffer CB; Boas DA
    J Cereb Blood Flow Metab; 2019 May; 39(5):886-900. PubMed ID: 29168661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coherence tomography-based micro-particle image velocimetry.
    Mujat M; Ferguson RD; Iftimia N; Hammer DX; Nedyalkov I; Wosnik M; Legner H
    Opt Lett; 2013 Nov; 38(22):4558-61. PubMed ID: 24322073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development.
    Davis AM; Rothenberg FG; Shepherd N; Izatt JA
    J Opt Soc Am A Opt Image Sci Vis; 2008 Dec; 25(12):3134-43. PubMed ID: 19037405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging-associated changes in cerebral vasculature and blood flow as determined by quantitative optical coherence tomography angiography.
    Li Y; Choi WJ; Wei W; Song S; Zhang Q; Liu J; Wang RK
    Neurobiol Aging; 2018 Oct; 70():148-159. PubMed ID: 30007164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical analysis of motion contrast in optical coherence tomography angiography.
    Cheng Y; Guo L; Pan C; Lu T; Hong T; Ding Z; Li P
    J Biomed Opt; 2015 Nov; 20(11):116004. PubMed ID: 26524681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.