These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19162781)

  • 1. A new approach to reconstruction of central aortic blood pressure using 'adaptive' transfer function.
    Hahn JO; Asada HH; Reisner AT; Jaffer FA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():813-6. PubMed ID: 19162781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blind identification of the central aortic pressure waveform from multiple peripheral arterial pressure waveforms.
    Swamy G; Ling Q; Li T; Mukkamala R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1822-5. PubMed ID: 17945671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blind identification of the aortic pressure waveform from multiple peripheral artery pressure waveforms.
    Swamy G; Ling Q; Li T; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2007 May; 292(5):H2257-64. PubMed ID: 17208992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.
    Lowe A; Harrison W; El-Aklouk E; Ruygrok P; Al-Jumaily AM
    J Biomech; 2009 Sep; 42(13):2111-5. PubMed ID: 19665136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the aortic pressure waveform and beat-to-beat relative cardiac output changes from multiple peripheral artery pressure waveforms.
    Swamy G; Mukkamala R
    IEEE Trans Biomed Eng; 2008 May; 55(5):1521-9. PubMed ID: 18440898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous ejection fraction estimation by model-based analysis of an aortic pressure waveform: comparison to echocardiography.
    Swamy G; Olivier B; Kuiper J; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():963-6. PubMed ID: 18002118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of a novel method to determine non-invasively the rate of central aortic pressure changes.
    Gorenberg M; Marmor A
    J Med Eng Technol; 2008; 32(4):257-62. PubMed ID: 18666005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of wave reflection using peripheral blood pressure waveforms.
    Kim CS; Fazeli N; McMurtry MS; Finegan BA; Hahn JO
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):309-16. PubMed ID: 25561452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive transfer function for deriving the aortic pressure waveform from a peripheral artery pressure waveform.
    Swamy G; Xu D; Olivier NB; Mukkamala R
    Am J Physiol Heart Circ Physiol; 2009 Nov; 297(5):H1956-63. PubMed ID: 19783780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-specific estimation of central aortic blood pressure using an individualized transfer function: a preliminary feasibility study.
    Hahn JO; Reisner AT; Jaffer FA; Asada HH
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):212-20. PubMed ID: 22147332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction of central aortic pressure waveform using adaptive multi-channel identification.
    Hahn JO; Reisner A; Hojman H; Asada HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3377-80. PubMed ID: 17945771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous cardiac output monitoring by peripheral blood pressure waveform analysis.
    Mukkamala R; Reisner AT; Hojman HM; Mark RG; Cohen RJ
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):459-67. PubMed ID: 16532772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of pulse transit time using two diametric blood pressure waveform measurements.
    Hahn JO; Reisner AT; Asada HH
    Med Eng Phys; 2010 Sep; 32(7):753-9. PubMed ID: 20537933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple models oscillometric blood pressure monitor identification.
    Pinheiro EC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():319-22. PubMed ID: 19162657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific estimation of central aortic blood pressure via system identification: preliminary in-human experimental study.
    Fazeli N; Kim CS; Rashedi M; Chappell A; Wang S; MacArthur R; McMurtry MS; Finegan B; Hahn JO
    Med Biol Eng Comput; 2014 Oct; 52(10):895-904. PubMed ID: 25182936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the aortic pressure waveform from a peripheral artery pressure waveform via an adaptive transfer function.
    Swamy G; Mukkamala R; Olivier N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1385-8. PubMed ID: 19162926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New model to estimate mean blood pressure by heart rate with stroke volume changing influence.
    Al-Jaafreh MO; Al-Jumaily AA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1803-5. PubMed ID: 17946482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of nonlinearity in cardiovascular variability signals using cyclostationary analysis.
    Seydnejad S
    Ann Biomed Eng; 2007 May; 35(5):744-54. PubMed ID: 17372836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new noninvasive device for measuring central ejection dP/dt mathematical foundation of cardiac dP/dt measurement using a model for a collapsible artery.
    Gorenberg M; Rotztein H; Marmor A
    Cardiovasc Eng; 2009 Mar; 9(1):27-31. PubMed ID: 19259812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards automating the pulmonary artery catheter: a canine validation study.
    Xu D; Olivier NB; Mukkamala R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():994-7. PubMed ID: 18002127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.