These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19162918)

  • 1. Discrimination of single and multiple human transmembrane proteins using kurtosis and morphological analysis.
    Kitsas IK; Hadjileontiadis LJ; Panas SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1351-4. PubMed ID: 19162918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear discrimination of transmembrane from non-transmembrane segments in proteins using higher-order crossings.
    Kitsas IK; Panas SM; Hadjileontiadis LJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5818-21. PubMed ID: 17946723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of transmembrane segments in human proteins using wavelet-based energy.
    Kitsas IK; Hadjileontiadis LJ; Panas SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1225-8. PubMed ID: 18002184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STAM: simple transmembrane alignment method.
    Shafrir Y; Guy HR
    Bioinformatics; 2004 Mar; 20(5):758-69. PubMed ID: 14751993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane proteins in the Protein Data Bank: identification and classification.
    Tusnády GE; Dosztányi Z; Simon I
    Bioinformatics; 2004 Nov; 20(17):2964-72. PubMed ID: 15180935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments.
    Fariselli P; Finelli M; Marchignoli D; Martelli PL; Rossi I; Casadio R
    Bioinformatics; 2003 Mar; 19(4):500-5. PubMed ID: 12611805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combination of compositional index and genetic algorithm for predicting transmembrane helical segments.
    Zaki N; Bouktif S; Lazarova-Molnar S
    PLoS One; 2011; 6(7):e21821. PubMed ID: 21814556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TMB-Hunt: a web server to screen sequence sets for transmembrane beta-barrel proteins.
    Garrow AG; Agnew A; Westhead DR
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W188-92. PubMed ID: 15980452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SVMtm: support vector machines to predict transmembrane segments.
    Yuan Z; Mattick JS; Teasdale RD
    J Comput Chem; 2004 Apr; 25(5):632-6. PubMed ID: 14978706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation.
    Yin X; Xu YY; Shen HB
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(6):1016-1026. PubMed ID: 26887010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition of transmembrane segments in proteins: review and consistency-based benchmarking of internet servers.
    Sadovskaya NS; Sutormin RA; Gelfand MS
    J Bioinform Comput Biol; 2006 Oct; 4(5):1033-56. PubMed ID: 17099940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational differentiation of N-terminal signal peptides and transmembrane helices.
    Yuan Z; Davis MJ; Zhang F; Teasdale RD
    Biochem Biophys Res Commun; 2003 Dec; 312(4):1278-83. PubMed ID: 14652012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PredβTM: A Novel β-Transmembrane Region Prediction Algorithm.
    Roy Choudhury A; Novič M
    PLoS One; 2015; 10(12):e0145564. PubMed ID: 26694538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IgTM: an algorithm to predict transmembrane domains and topology in proteins.
    Peris P; López D; Campos M
    BMC Bioinformatics; 2008 Sep; 9():367. PubMed ID: 18783592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TOPPER: topology prediction of transmembrane protein based on evidential reasoning.
    Deng X; Liu Q; Hu Y; Deng Y
    ScientificWorldJournal; 2013; 2013():123731. PubMed ID: 23401665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the accuracy of transmembrane protein topology prediction using evolutionary information.
    Jones DT
    Bioinformatics; 2007 Mar; 23(5):538-44. PubMed ID: 17237066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting Alpha Helical Transmembrane Proteins Using HMMs.
    Tsaousis GN; Theodoropoulou MC; Hamodrakas SJ; Bagos PG
    Methods Mol Biol; 2017; 1552():63-82. PubMed ID: 28224491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.