These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19163056)

  • 1. A novel approach for Doppler blood flow measurement.
    McNamara DM; Goli A; Ziarani AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1883-5. PubMed ID: 19163056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction for broadening in Doppler blood flow spectrum estimated using wavelet transform.
    Zhang Y; Xu L; Chen J; Ma H; Shi X
    Med Eng Phys; 2006 Jul; 28(6):596-603. PubMed ID: 16256404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):345-54. PubMed ID: 15121004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Doppler signal analysis techniques for velocity waveform, turbulence and vortex measurement: a simulation study.
    Wang Y; Fish PJ
    Ultrasound Med Biol; 1996; 22(5):635-49. PubMed ID: 8865559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the blood Doppler frequency shift by a time-varying parametric approach.
    Girault JM; Kouamé D; Ouahabi A; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):682-7. PubMed ID: 10829752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An adaptive approach to computing the spectrum and mean frequency of Doppler signals.
    Herment A; Giovannelli JF
    Ultrason Imaging; 1995 Jan; 17(1):1-26. PubMed ID: 7638930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
    Zhang Y; Guo Z; Wang W; He S; Lee T; Loew M
    Med Eng Phys; 2003 Sep; 25(7):547-57. PubMed ID: 12835067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution processing techniques for ultrasound doppler velocimetry in the presence of colored noise. Part I: Nonstationary methods.
    Kouamé D; Girault JM; Patat F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):257-66. PubMed ID: 12699159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise reduction in Doppler ultrasound signals using an adaptive decomposition algorithm.
    Zhang Y; Wang L; Gao Y; Chen J; Shi X
    Med Eng Phys; 2007 Jul; 29(6):699-707. PubMed ID: 16996774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency tracking in optical Doppler tomography using an adaptive notch filter.
    Chen Y; Willett P; Zhu Q
    J Biomed Opt; 2007; 12(1):014018. PubMed ID: 17343493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of carotid disease with the application of STFT and CWT methods.
    Hardalaç F; Yildirim H; Serhatlioğlu S
    Comput Biol Med; 2007 Jun; 37(6):785-92. PubMed ID: 16997292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution processing techniques for ultrasound doppler velocimetry in the presence of colored noise. Part II: Multiplephase pipe-flow velocity measurement.
    Kouamé D; Girault JM; Remenieras JP; Chemla JP; Lethiecq M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Mar; 50(3):267-78. PubMed ID: 12699160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Denoising of arterial and venous Doppler signals using discrete wavelet transform: effect on clinical parameters.
    Tokmakçi M; Erdoğan N
    Contemp Clin Trials; 2009 May; 30(3):192-200. PubMed ID: 19470316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulator for mixed Doppler ultrasound signals from pulsatile blood flow and vessel wall with mild stenosis.
    Zhang Y; Gao L; Shen K; Zhang K; Yan J; Cheng W; Zhang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1903-6. PubMed ID: 24110084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A study of the spectral broadening of simulated Doppler signals using FFT and AR modelling.
    Keeton PI; Schlindwein FS; Evans DH
    Ultrasound Med Biol; 1997; 23(7):1033-45. PubMed ID: 9330447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-Adaptive 2-D Tracking Doppler for High-Resolution Spectral Estimation.
    Karabiyik Y; Avdal J; Ekroll IK; Fiorentini S; Torp H; Lovstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):3-12. PubMed ID: 31449012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-scale detection of microemboli in flowing blood with Doppler ultrasound.
    Krongold BS; Sayeed AM; Moehring MA; Ritcey JA; Spencer MP; Jones DL
    IEEE Trans Biomed Eng; 1999 Sep; 46(9):1081-9. PubMed ID: 10493071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of time-frequency distribution techniques for analysis of simulated Doppler ultrasound signals of the femoral artery.
    Guo Z; Durand LG; Lee HC
    IEEE Trans Biomed Eng; 1994 Apr; 41(4):332-42. PubMed ID: 8063299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coded ultrasound for blood flow estimation using subband processing.
    Gran F; Udesen J; Nielsen MB; Jensen JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2211-20. PubMed ID: 18986869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectrogram enhancement algorithm: a soft thresholding-based approach.
    Liu B; Wang Y; Wang W
    Ultrasound Med Biol; 1999 Jun; 25(5):839-46. PubMed ID: 10414901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.