These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19163056)

  • 21. Nonstationarity broadening reduction in pulsed Doppler spectrum measurements using time-frequency estimators.
    Cardoso JC; Ruano MG; Fish PJ
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1176-86. PubMed ID: 9214836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multigate doppler signal analysis using 3-D regularized long AR modelling.
    Berthomier C; Herment A; Giovannelli JF; Guidi G; Pourcelot L; Diebold B
    Ultrasound Med Biol; 2001 Nov; 27(11):1515-23. PubMed ID: 11750751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The spectral broadening correction in peak blood flow velocity estimation].
    Qian M; Li J; Wan M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Sep; 15(3):273-6. PubMed ID: 12553252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of lower limb arterial stenoses from Doppler blood flow signal analysis with time-frequency representation and pattern recognition techniques.
    Guo Z; Durand LG; Allard L; Cloutier G; Lee HC
    Ultrasound Med Biol; 1994; 20(4):335-46. PubMed ID: 8085290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved assessment of intravascular Doppler coronary flow velocity profile.
    Wellnhofer E; Finke W; Bernard L; Dänschel W; Fleck E
    Int J Card Imaging; 1997 Feb; 13(1):25-34. PubMed ID: 9080236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Embolic Doppler ultrasound signal detection via fractional Fourier transform.
    Gençer M; Bilgin G; Aydın N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3050-3. PubMed ID: 24110371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of empirical mode decomposition to remove the wall components in Doppler ultrasound signals: a simulation study.
    Zhang Y; Gao Y; Wang L; Chen J; Shi X
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6173-6. PubMed ID: 17945943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of blood perfusion using ultrasound.
    Jansson T; Persson HW; Lindström K
    Proc Inst Mech Eng H; 1999; 213(2):91-106. PubMed ID: 10333683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional blood velocity estimation with ultrasound: speckle tracking versus crossed-beam vector Doppler based on flow simulations in a carotid bifurcation model.
    Swillens A; Segers P; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):327-39. PubMed ID: 20178899
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved blood velocity estimation using the maximum Doppler frequency.
    Tortoli P; Guidi G; Newhouse VL
    Ultrasound Med Biol; 1995; 21(4):527-32. PubMed ID: 7571145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive SVD-based AR model order determination for time-frequency analysis of Doppler ultrasound signals.
    Fort A; Manfredi C; Rocchi S
    Ultrasound Med Biol; 1995; 21(6):793-805. PubMed ID: 8571467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. STFT or CWT for the detection of Doppler ultrasound embolic signals.
    Gonçalves IB; Leiria A; Moura MM
    Int J Numer Method Biomed Eng; 2013 Sep; 29(9):964-76. PubMed ID: 23576393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of eigenvector methods with classical and model-based methods in analysis of internal carotid arterial Doppler signals.
    Ubeyli ED; Güler I
    Comput Biol Med; 2003 Nov; 33(6):473-93. PubMed ID: 12878232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of classical and model-based spectral methods to ophthalmic arterial Doppler signals with uveitis disease.
    Güler I; Ubeyli ED
    Comput Biol Med; 2003 Nov; 33(6):455-71. PubMed ID: 12878231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of Doppler ultrasound signals for a laminar, pulsatile, nonuniform flow.
    Wendling F; Jones SA; Giddens DP
    Ultrasound Med Biol; 1992; 18(2):179-93. PubMed ID: 1580014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral Doppler estimation utilizing 2-D spatial information and adaptive signal processing.
    Ekroll IK; Torp H; Løvstakken L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1182-92. PubMed ID: 22711413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Directional dual-tree complex wavelet packet transform.
    Serbes G; Aydin N; Gulcur HO
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3046-9. PubMed ID: 24110370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flow Rate and Low Hematocrit Measurements for In Vitro Blood Processing With Doppler Ultrasound.
    Pialot B; Gachelin J; Tanter M; Provost J; Couture O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1293-1302. PubMed ID: 31995481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptive Spectral Envelope Estimation for Doppler Ultrasound.
    Kathpalia A; Karabiyik Y; Eik-Nes SH; Tegnander E; Ekroll IK; Kiss G; Torp H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1825-1838. PubMed ID: 27824563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time delay estimation using wavelet transform for pulsed-wave ultrasound.
    Xu XL; Tewfik AH; Greenleaf JF
    Ann Biomed Eng; 1995; 23(5):612-21. PubMed ID: 7503463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.