These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19163074)

  • 1. User evaluation of a collaborative wheelchair system.
    Zeng Q; Burdet E; Teo CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1956-60. PubMed ID: 19163074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A collaborative wheelchair system.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2008 Apr; 16(2):161-70. PubMed ID: 18403284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the collaborative wheelchair adapted to cerebral palsy and traumatic brain injury subjects?
    Zeng Q; Teo CL; Burdet E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1965-8. PubMed ID: 19163076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a collaborative wheelchair system in cerebral palsy and traumatic brain injury users.
    Zeng Q; Burdet E; Teo CL
    Neurorehabil Neural Repair; 2009 Jun; 23(5):494-504. PubMed ID: 19074687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collaborative path planning for a robotic wheelchair.
    Zeng Q; Teo CL; Rebsamen B; Burdet E
    Disabil Rehabil Assist Technol; 2008 Nov; 3(6):315-24. PubMed ID: 19117192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation.
    Zhang R; Li Y; Yan Y; Zhang H; Wu S; Yu T; Gu Z
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):128-39. PubMed ID: 26054072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using machine learning to blend human and robot controls for assisted wheelchair navigation.
    Goil A; Derry M; Argall BD
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650454. PubMed ID: 24187271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of semiautonomous navigation assistance system for power wheelchairs with blindfolded nondisabled individuals.
    Sharma V; Simpson R; Lopresti E; Schmeler M
    J Rehabil Res Dev; 2010; 47(9):877-90. PubMed ID: 21174252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assisted navigation based on shared-control, using discrete and sparse human-machine interfaces.
    Lopes AC; Nunes U; Vaz L; Vaz L
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():471-4. PubMed ID: 21095885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A self-paced motor imagery based brain-computer interface for robotic wheelchair control.
    Tsui CS; Gan JQ; Hu H
    Clin EEG Neurosci; 2011 Oct; 42(4):225-9. PubMed ID: 22208119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control architecture for human-robot integration: application to a robotic wheelchair.
    Galindo C; Gonzalez J; Fernández-Madrigal JA
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an intelligent wheelchair system for users with cerebral palsy.
    Montesano L; Díaz M; Bhaskar S; Minguez J
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):193-202. PubMed ID: 20071276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asynchronous brain machine interface-based control of a wheelchair.
    Hema CR; Paulraj MP; Yaacob S; Adom AH; Nagarajan R
    Adv Exp Med Biol; 2011; 696():565-72. PubMed ID: 21431597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asynchronous non-invasive brain-actuated control of an intelligent wheelchair.
    Del R Millan JJ; Galan F; Vanhooydonck D; Lew E; Philips J; Nuttin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3361-4. PubMed ID: 19963794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The smart wheelchair component system.
    Simpson R; Lopresti E; Hayashi S; Nourbakhsh I; Miller D
    J Rehabil Res Dev; 2004 May; 41(3B):429-42. PubMed ID: 15543461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shared control strategies for human-machine interface in an intelligent wheelchair.
    Nguyen AV; Nguyen LB; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3638-41. PubMed ID: 24110518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How many people would benefit from a smart wheelchair?
    Simpson RC; LoPresti EF; Cooper RA
    J Rehabil Res Dev; 2008; 45(1):53-71. PubMed ID: 18566926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NavChair Assistive Wheelchair Navigation System.
    Levine SP; Bell DA; Jaros LA; Simpson RC; Koren Y; Borenstein J
    IEEE Trans Rehabil Eng; 1999 Dec; 7(4):443-51. PubMed ID: 10609632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.