These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19163162)

  • 1. Heat enhances gas delivery and acoustic attenuation in CO(2) filled microbubbles.
    Giustetto P; Bisazza A; Biagioni A; Alippi A; Bettucci A; Cavalli R; Guiot C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2306-9. PubMed ID: 19163162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal response of contrast agent microbubbles: preliminary results from physico-chemical and US-imaging characterization.
    Guiot C; Pastore G; Napoleone M; Gabriele P; Trotta M; Cavalli R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e127-30. PubMed ID: 17056082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: linear properties (part I).
    Grishenkov D; Pecorari C; Brismar TB; Paradossi G
    Ultrasound Med Biol; 2009 Jul; 35(7):1127-38. PubMed ID: 19427099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced heat deposition using ultrasound contrast agent--modeling and experimental observations.
    Razansky D; Einziger PD; Adam DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Jan; 53(1):137-47. PubMed ID: 16471440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling photothermal and acoustical induced microbubble generation and growth.
    Krasovitski B; Kislev H; Kimmel E
    Ultrasonics; 2007 Dec; 47(1-4):90-101. PubMed ID: 17910969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-dependent differences in the nonlinear acoustic behavior of ultrasound contrast agents revealed by high-speed imaging and bulk acoustics.
    Mulvana H; Stride E; Tang M; Hajnal JV; Eckersley R
    Ultrasound Med Biol; 2011 Sep; 37(9):1509-17. PubMed ID: 21741759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of in vitro and in vivo acoustic response of a novel 50:50 PLGA contrast agent.
    Wheatley MA; Forsberg F; Oum K; Ro R; El-Sherif D
    Ultrasonics; 2006 Nov; 44(4):360-7. PubMed ID: 16730047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing cell kill in vitro from hyperthermia through pre-sensitizing with ultrasound-stimulated microbubbles.
    Ghoshal G; Oelze ML
    J Acoust Soc Am; 2015 Dec; 138(6):EL493-7. PubMed ID: 26723356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection.
    Chen X; Wang J; Pacella JJ; Villanueva FS
    Ultrasound Med Biol; 2016 Feb; 42(2):528-538. PubMed ID: 26603628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of temperature on the acoustic response and stability of size-isolated protein-shelled ultrasound contrast agents and SonoVue.
    Kaushik A; Khan AH; Pratibha ; Dalvi SV; Shekhar H
    J Acoust Soc Am; 2023 Apr; 153(4):2324. PubMed ID: 37092939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticles Formed by Acoustic Destruction of Microbubbles and Their Utilization for Imaging and Effects on Therapy by High Intensity Focused Ultrasound.
    Blum NT; Yildirim A; Chattaraj R; Goodwin AP
    Theranostics; 2017; 7(3):694-702. PubMed ID: 28255360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound molecular imaging.
    Voigt JU
    Methods; 2009 Jun; 48(2):92-7. PubMed ID: 19324089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasound contrast agent loaded with nitric oxide as a theranostic microdevice.
    Grishenkov D; Gonon A; Weitzberg E; Lundberg JO; Harmark J; Cerroni B; Paradossi G; Janerot-Sjoberg B
    Drug Des Devel Ther; 2015; 9():2409-19. PubMed ID: 25995614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of nesting shell size on brightness longevity and resistance to ultrasound-induced dissolution during enhanced B-mode contrast imaging.
    Wallace N; Dicker S; Lewin P; Wrenn SP
    Ultrasonics; 2014 Dec; 54(8):2099-108. PubMed ID: 25041980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices.
    Capece S; Chiessi E; Cavalli R; Giustetto P; Grishenkov D; Paradossi G
    Chem Commun (Camb); 2013 Jun; 49(51):5763-5. PubMed ID: 23689681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: ultrasound-induced fracture (part II).
    Grishenkov D; Pecorari C; Brismar TB; Paradossi G
    Ultrasound Med Biol; 2009 Jul; 35(7):1139-47. PubMed ID: 19427102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Ultrasound contrast agents--physical basics].
    Kollmann C; Putzer M
    Radiologe; 2005 Jun; 45(6):503-12. PubMed ID: 15809841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Temperature on the Size Distribution, Shell Properties, and Stability of Definity
    Shekhar H; Smith NJ; Raymond JL; Holland CK
    Ultrasound Med Biol; 2018 Feb; 44(2):434-446. PubMed ID: 29174045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependent behavior of ultrasound contrast agents.
    Mulvana H; Stride E; Hajnal JV; Eckersley RJ
    Ultrasound Med Biol; 2010 Jun; 36(6):925-34. PubMed ID: 20447756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation threshold of microbubbles in gel tunnels by focused ultrasound.
    Sassaroli E; Hynynen K
    Ultrasound Med Biol; 2007 Oct; 33(10):1651-60. PubMed ID: 17590501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.