These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19163193)

  • 1. Portable sensor based dynamic estimation of human oxygen uptake via nonlinear multivariable modelling.
    Su SW; Celler BG; Savkin AV; Nguyen HT; Cheng TM; Guo Y; Wang L
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2431-4. PubMed ID: 19163193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of oxygen consumption for moderate exercises by using a Hammerstein model.
    Su SW; Wang L; Celler BG; Savkin AV
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3427-30. PubMed ID: 17946181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient and steady state estimation of human oxygen uptake based on noninvasive portable sensor measurements.
    Su SW; Celler BG; Savkin AV; Nguyen HT; Cheng TM; Guo Y; Wang L
    Med Biol Eng Comput; 2009 Oct; 47(10):1111-7. PubMed ID: 19798527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen uptake estimation in humans during exercise using a Hammerstein model.
    Su SW; Wang L; Celler BG; Savkin AV
    Ann Biomed Eng; 2007 Nov; 35(11):1898-906. PubMed ID: 17687652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling and control for heart rate regulation during treadmill exercise.
    Su SW; Wang L; Celler BG; Savkin AV; Guo Y
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4299-302. PubMed ID: 17946236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonparametric Hammerstein model based model predictive control for heart rate regulation.
    Su SW; Huang S; Wang L; Celler BG; Savkin AV; Guo Y; Cheng T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2984-7. PubMed ID: 18002622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of resistance exercise energy expenditure using triaxial accelerometry.
    Stec MJ; Rawson ES
    J Strength Cond Res; 2012 May; 26(5):1413-22. PubMed ID: 22222328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity energy expenditure assessment system based on activity classification using multi-site triaxial accelerometers.
    Dongwoo K; Kim HC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2285-7. PubMed ID: 18002447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and control for heart rate regulation during treadmill exercise.
    Su SW; Wang L; Celler BG; Savkin AV; Guo Y
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1238-46. PubMed ID: 17605355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy efficient on-sensor processing in Body Sensor Networks.
    Marnane W; Faul S; Bleakley C; Conway R; Jones E; Popovici E; de la Guia Solaz M; Morgan F; Patel K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2025-9. PubMed ID: 21096426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A preliminary study on estimation of energy expenditure at different locations of acceleration sensor during submaximal exercise.
    Kim T; Kim Y; Yoon H; Shin T
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4902-5. PubMed ID: 19963635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerometry-Based Distance Estimation for Ambulatory Human Motion Analysis.
    Alvarez JC; Álvarez D; López AM
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating Oxygen Uptake During Nonsteady-State Activities and Transitions Using Wearable Sensors.
    Altini M; Penders J; Amft O
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):469-75. PubMed ID: 25594986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Personalized cardiorespiratory fitness and energy expenditure estimation using hierarchical Bayesian models.
    Altini M; Casale P; Penders J; Amft O
    J Biomed Inform; 2015 Aug; 56():195-204. PubMed ID: 26079263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic characteristics of oxygen consumption.
    Ye L; Argha A; Yu H; Celler BG; Nguyen HT; Su S
    Biomed Eng Online; 2018 Apr; 17(1):44. PubMed ID: 29685173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerometer output and its association with energy expenditure in persons with multiple sclerosis.
    Sandroff BM; Motl RW; Suh Y
    J Rehabil Res Dev; 2012; 49(3):467-75. PubMed ID: 22773205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of oxygen consumption during cycling and rowing.
    Baig DE; Savkin AV; Celler BG
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():711-4. PubMed ID: 23365991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of oxygen uptake during fast running using accelerometry and heart rate.
    Fudge BW; Wilson J; Easton C; Irwin L; Clark J; Haddow O; Kayser B; Pitsiladis YP
    Med Sci Sports Exerc; 2007 Jan; 39(1):192-8. PubMed ID: 17218902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic linearity of VO2 responses during aerobic exercise.
    Hoffmann U; Essfeld D; Wunderlich HG; Stegemann J
    Eur J Appl Physiol Occup Physiol; 1992; 64(2):139-44. PubMed ID: 1555560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary investigation of energy comparation between gyroscope, electromyography and VO2 wearable sensors.
    Williams G; Saiyi Li ; Pathirana PN
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4963-4966. PubMed ID: 28269382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.