These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19163233)

  • 1. Feature extraction of speech signals in emotion identification.
    Morales-Perez M; Echeverry-Correa J; Orozco-Gutierrez A; Castellanos-Dominguez G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2590-3. PubMed ID: 19163233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rule-based emotion-dependent feature extraction method for emotion analysis from speech.
    Hozjan V; Kacic Z
    J Acoust Soc Am; 2006 May; 119(5 Pt 1):3109-20. PubMed ID: 16708965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the robustness of overall F0-only modifications to the perception of emotions in speech.
    Bulut M; Narayanan S
    J Acoust Soc Am; 2008 Jun; 123(6):4547-58. PubMed ID: 18537403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emotional speech acoustic model for Malay: iterative versus isolated unit training.
    Mustafa MB; Ainon RN
    J Acoust Soc Am; 2013 Oct; 134(4):3057-66. PubMed ID: 24116440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic intelligibility assessment of speakers after laryngeal cancer by means of acoustic modeling.
    Bocklet T; Riedhammer K; Nöth E; Eysholdt U; Haderlein T
    J Voice; 2012 May; 26(3):390-7. PubMed ID: 21820272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic and perceptual evaluation of category goodness of /t/ and /k/ in typical and misarticulated children's speech.
    Strömbergsson S; Salvi G; House D
    J Acoust Soc Am; 2015 Jun; 137(6):3422-35. PubMed ID: 26093431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speech intelligibility estimation using multi-resolution spectral features for speakers undergoing cancer treatment.
    Kim JC; Rao H; Clements MA
    J Acoust Soc Am; 2014 Oct; 136(4):EL315-21. PubMed ID: 25324116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Issues in forensic voice.
    Hollien H; Huntley Bahr R; Harnsberger JD
    J Voice; 2014 Mar; 28(2):170-84. PubMed ID: 24176301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of glottis landmarks for the assessment of cleft lip and palate speech intelligibility.
    Kalita S; Mahadeva Prasanna SR; Dandapat S
    J Acoust Soc Am; 2018 Nov; 144(5):2656. PubMed ID: 30522275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal and Spectral Degradation Effects on Speech and Emotion Recognition in Adult Listeners.
    Ritter C; Vongpaisal T
    Trends Hear; 2018; 22():2331216518804966. PubMed ID: 30378469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of emotions in Mexican Spanish speech: an approach based on acoustic modelling of emotion-specific vowels.
    Caballero-Morales SO
    ScientificWorldJournal; 2013; 2013():162093. PubMed ID: 23935410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Static features in real-time recognition of isolated vowels at high pitch.
    Ferreira AJ
    J Acoust Soc Am; 2007 Oct; 122(4):2389-404. PubMed ID: 17902873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra- and Inter-database Study for Arabic, English, and German Databases: Do Conventional Speech Features Detect Voice Pathology?
    Ali Z; Alsulaiman M; Muhammad G; Elamvazuthi I; Al-Nasheri A; Mesallam TA; Farahat M; Malki KH
    J Voice; 2017 May; 31(3):386.e1-386.e8. PubMed ID: 27745756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete wavelet transform coefficients for emotion recognition from EEG signals.
    Yohanes RE; Ser W; Huang GB
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2251-4. PubMed ID: 23366371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing.
    Jørgensen S; Dau T
    J Acoust Soc Am; 2011 Sep; 130(3):1475-87. PubMed ID: 21895088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voice source characterization using pitch synchronous discrete cosine transform for speaker identification.
    Ramakrishnan AG; Abhiram B; Prasanna SR
    J Acoust Soc Am; 2015 Jun; 137(6):EL469-75. PubMed ID: 26093457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of phonation type to the perception of vocal emotions in German: an articulatory synthesis study.
    Birkholz P; Martin L; Willmes K; Kröger BJ; Neuschaefer-Rube C
    J Acoust Soc Am; 2015 Mar; 137(3):1503-12. PubMed ID: 25786961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic and intelligibility characteristics of sentence production in neurogenic speech disorders.
    Weismer G; Jeng JY; Laures JS; Kent RD; Kent JF
    Folia Phoniatr Logop; 2001; 53(1):1-18. PubMed ID: 11125256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.