These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19163272)

  • 1. From spikes to EEG: integrated multichannel and selective acquisition of neuropotentials.
    Mollazadeh M; Murari K; Cauwenberghs G; Thakor N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2741-4. PubMed ID: 19163272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials.
    Mollazadeh M; Murari K; Cauwenberghs G; Thakor N
    IEEE Trans Biomed Circuits Syst; 2009 Feb; 3(1):1-10. PubMed ID: 20046962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated system for multichannel neuronal recording with spike/LFP separation, integrated A/D conversion and threshold detection.
    Perelman Y; Ginosar R
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):130-7. PubMed ID: 17260864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analog frontend for multichannel neuronal recording system with spike and LFP separation.
    Perelman Y; Ginosar R
    J Neurosci Methods; 2006 May; 153(1):21-6. PubMed ID: 16337276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and measurements of low power multichannel chip for recording and stimulation of neural activity.
    Zoladz M; Kmon P; Grybos P; Szczygiel R; Kleczek R; Otfinowski P; Rauza J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4470-4. PubMed ID: 23366920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Sub- μW/Ch Analog Front-End for ∆-Neural Recording With Spike-Driven Data Compression.
    Kim SJ; Han SH; Cha JH; Liu L; Yao L; Gao Y; Je M
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):1-14. PubMed ID: 30418918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A low power multichannel analog front end for portable neural signal recordings.
    Obeid I; Nicolelis MA; Wolf PD
    J Neurosci Methods; 2004 Feb; 133(1-2):27-32. PubMed ID: 14757341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-power programmable neural spike detection channel with embedded calibration and data compression.
    Rodriguez-Perez A; Ruiz-Amaya J; Delgado-Restituto M; Rodriguez-Vazquez Á
    IEEE Trans Biomed Circuits Syst; 2012 Apr; 6(2):87-100. PubMed ID: 23852974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-cost, scalable, current-sensing digital headstage for high channel count μECoG.
    Trumpis M; Insanally M; Zou J; Elsharif A; Ghomashchi A; Sertac Artan N; Froemke RC; Viventi J
    J Neural Eng; 2017 Apr; 14(2):026009. PubMed ID: 28102827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and measurements of 64-channel ASIC for neural signal recording.
    Kmon P; Zoladz M; Grybos P; Szczygiel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():528-31. PubMed ID: 19964226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays.
    Olsson RH; Buhl DL; Sirota AM; Buzsaki G; Wise KD
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-low noise miniaturized neural amplifier with hardware averaging.
    Dweiri YM; Eggers T; McCallum G; Durand DM
    J Neural Eng; 2015 Aug; 12(4):046024. PubMed ID: 26083774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The design of CMOS general-purpose analog front-end circuit with tunable gain and bandwidth for biopotential signal recording systems.
    Chen WM; Yang WC; Tsai TY; Chiueh H; Wu CY
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4784-7. PubMed ID: 22255408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A band-tunable, multichannel amplifier for neural recording with AP/LFP separation and dual-threshold adaptive AP detector.
    Wu JY; Tang KT
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1847-50. PubMed ID: 22254689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays.
    Dabrowski W; Grybos P; Litke AM
    Biosens Bioelectron; 2004 Feb; 19(7):749-61. PubMed ID: 14709394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays.
    Billoint O; Rostaing JP; Charvet G; Yvert B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6070-3. PubMed ID: 18003399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-noise receiver for multichannel wireless neural recording.
    Yin M; Ghovanloo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2024-7. PubMed ID: 19163091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully integrated neural recording amplifier with DC input stabilization.
    Mohseni P; Najafi K
    IEEE Trans Biomed Eng; 2004 May; 51(5):832-7. PubMed ID: 15132510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two multichannel integrated circuits for neural recording and signal processing.
    Obeid I; Morizio JC; Moxon KA; Nicolelis MA; Wolf PD
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):255-8. PubMed ID: 12665041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System.
    Wu CY; Cheng CH; Chen ZX
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):543-553. PubMed ID: 29877818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.