These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 19163352)
1. Segmentation of scalp and skull in neonatal MR images using probabilistic atlas and level set method. Ghadimi S; Abrishami-Moghaddam H; Kazemi K; Grebe R; Goundry-Jouet C; Wallois F Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3060-3. PubMed ID: 19163352 [TBL] [Abstract][Full Text] [Related]
2. Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Lorenzo-Valdés M; Sanchez-Ortiz GI; Elkington AG; Mohiaddin RH; Rueckert D Med Image Anal; 2004 Sep; 8(3):255-65. PubMed ID: 15450220 [TBL] [Abstract][Full Text] [Related]
3. Neonatal probabilistic models for brain, CSF and skull using T1-MRI data: preliminary results. Kazemi K; Ghadimi S; Abrishami-Moghaddam H; Grebe R; Gondry-Jouet C; Wallois F Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3892-5. PubMed ID: 19163563 [TBL] [Abstract][Full Text] [Related]
4. Reconstruction of 3-D head geometry from digitized point sets: an evaluation study. Koikkalainen J; Lötjönen J IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):377-86. PubMed ID: 15484443 [TBL] [Abstract][Full Text] [Related]
5. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model. Martin S; Troccaz J; Daanenc V Med Phys; 2010 Apr; 37(4):1579-90. PubMed ID: 20443479 [TBL] [Abstract][Full Text] [Related]
6. Segmentation of skull and scalp in 3-D human MRI using mathematical morphology. Dogdas B; Shattuck DW; Leahy RM Hum Brain Mapp; 2005 Dec; 26(4):273-85. PubMed ID: 15966000 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Klein S; van der Heide UA; Lips IM; van Vulpen M; Staring M; Pluim JP Med Phys; 2008 Apr; 35(4):1407-17. PubMed ID: 18491536 [TBL] [Abstract][Full Text] [Related]
9. A digital pediatric brain structure atlas from T1-weighted MR images. Shan ZY; Parra C; Ji Q; Ogg RJ; Zhang Y; Laningham FH; Reddick WE Med Image Comput Comput Assist Interv; 2006; 9(Pt 2):332-9. PubMed ID: 17354789 [TBL] [Abstract][Full Text] [Related]
10. Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context. Bondiau PY; Malandain G; Chanalet S; Marcy PY; Habrand JL; Fauchon F; Paquis P; Courdi A; Commowick O; Rutten I; Ayache N Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):289-98. PubMed ID: 15629622 [TBL] [Abstract][Full Text] [Related]
11. An adaptive probabilistic atlas for anomalous brain segmentation in MR images. Martins SB; Bragantini J; Falcão AX; Yasuda CL Med Phys; 2019 Nov; 46(11):4940-4950. PubMed ID: 31423590 [TBL] [Abstract][Full Text] [Related]
12. Reliability-based robust multi-atlas label fusion for brain MRI segmentation. Sun L; Zu C; Shao W; Guang J; Zhang D; Liu M Artif Intell Med; 2019 May; 96():12-24. PubMed ID: 31164205 [TBL] [Abstract][Full Text] [Related]
13. Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. Pipitone J; Park MT; Winterburn J; Lett TA; Lerch JP; Pruessner JC; Lepage M; Voineskos AN; Chakravarty MM; Neuroimage; 2014 Nov; 101():494-512. PubMed ID: 24784800 [TBL] [Abstract][Full Text] [Related]
14. Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain. Heiskala J; Pollari M; Metsäranta M; Grant PE; Nissilä I Opt Express; 2009 Aug; 17(17):14977-92. PubMed ID: 19687976 [TBL] [Abstract][Full Text] [Related]
15. A label fusion method using conditional random fields with higher-order potentials: Application to hippocampal segmentation. Platero C; Carmen Tobar M Artif Intell Med; 2015 Jun; 64(2):117-29. PubMed ID: 25982908 [TBL] [Abstract][Full Text] [Related]
16. Design of a digital phantom of the neonatal brain. Kazemi K; Grebe R; Moghaddam AH; Lagadec P; Gondry-Jouet C; Wallois F Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5509-12. PubMed ID: 18003259 [TBL] [Abstract][Full Text] [Related]
17. Neonatal brain image segmentation in longitudinal MRI studies. Shi F; Fan Y; Tang S; Gilmore JH; Lin W; Shen D Neuroimage; 2010 Jan; 49(1):391-400. PubMed ID: 19660558 [TBL] [Abstract][Full Text] [Related]
18. Automatic segmentation of neonatal images using convex optimization and coupled level sets. Wang L; Shi F; Lin W; Gilmore JH; Shen D Neuroimage; 2011 Oct; 58(3):805-17. PubMed ID: 21763443 [TBL] [Abstract][Full Text] [Related]
19. Automated segmentation of the quadratus lumborum muscle from magnetic resonance images using a hybrid atlas based - geodesic active contour scheme. Jurcak V; Fripp J; Engstrom C; Walker D; Salvado O; Ourselin S; Crozier S Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():867-70. PubMed ID: 19162794 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of MRI-guided attenuation correction techniques in time-of-flight brain PET/MRI. Mehranian A; Arabi H; Zaidi H Neuroimage; 2016 Apr; 130():123-133. PubMed ID: 26853602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]