These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19163384)

  • 1. The case for a generic implant processor.
    Strydis C; Gaydadjiev GN
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3186-91. PubMed ID: 19163384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultra-low-power programmable analog bionic ear processor.
    Sarpeshkar R; Salthouse C; Sit JJ; Baker MW; Zhak SM; Lu TK; Turicchia L; Balster S
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):711-27. PubMed ID: 15825873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [How does a cochlear implant speech processor work?].
    Adunka O; Kiefer J
    Laryngorhinootologie; 2005 Nov; 84(11):841-50; quiz 851-4. PubMed ID: 16358193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new portable sound processor for the University of Melbourne/Nucleus Limited multielectrode cochlear implant.
    McDermott HJ; McKay CM; Vandali AE
    J Acoust Soc Am; 1992 Jun; 91(6):3367-71. PubMed ID: 1619114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and functioning of the single-electrode cochlear implant.
    Danley MJ; Fretz RJ
    Ann Otol Rhinol Laryngol Suppl; 1982; 91(2 Pt 3):21-6. PubMed ID: 6805393
    [No Abstract]   [Full Text] [Related]  

  • 6. Two new directions in speech processor design for cochlear implants.
    Wilson BS; Schatzer R; Lopez-Poveda EA; Sun X; Lawson DT; Wolford RD
    Ear Hear; 2005 Aug; 26(4 Suppl):73S-81S. PubMed ID: 16082269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical outcomes with the Kanso™ off-the-ear cochlear implant sound processor.
    Mauger SJ; Jones M; Nel E; Del Dot J
    Int J Audiol; 2017 Apr; 56(4):267-276. PubMed ID: 28067077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A miniature on-chip multi-functional ECG signal processor with 30 µW ultra-low power consumption.
    Liu X; Zheng YJ; Phyu MW; Zhao B; Je M; Yuan XJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2577-80. PubMed ID: 21096174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [CILAB--a PC-based laboratory speech processor for implementation and evaluation of new stimulation strategies for cochlear implants].
    Mitterbacher A; Lampacher P; Zierhofer C; Hochmair E
    Biomed Tech (Berl); 2004 Jun; 49(6):146-52. PubMed ID: 15279463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 64-channel neural signal processor/ compressor based on Haar wavelet transform.
    Shaeri MA; Sodagar AM; Abrishami-Moghaddam H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6409-12. PubMed ID: 22255805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using evoked compound action potentials to assess activation of electrodes and predict C-levels in the Tempo+ cochlear implant speech processor.
    Alvarez I; de la Torre A; Sainz M; Roldán C; Schoesser H; Spitzer P
    Ear Hear; 2010 Feb; 31(1):134-45. PubMed ID: 19838116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Algorithms, hardware, and software for a digital signal processor microcomputer-based speech processor in a multielectrode cochlear implant system.
    Morris LR; Barszczewski P
    IEEE Trans Biomed Eng; 1989 Jun; 36(6):573-84. PubMed ID: 2731944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A low power biomedical signal processor ASIC based on hardware software codesign.
    Nie ZD; Wang L; Chen WG; Zhang T; Zhang YT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2559-62. PubMed ID: 19965211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Technical advancements in cochlear implants : State of the art].
    Büchner A; Gärtner L
    HNO; 2017 Apr; 65(4):276-289. PubMed ID: 28303288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cochlear implants].
    Lehnhardt E; Battmer RD; Nakahodo K; Laszig R
    HNO; 1986 Jul; 34(7):271-9. PubMed ID: 3755709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benefits of upgrading to the Nucleus
    Todorov MJ; Galvin KL
    Cochlear Implants Int; 2018 Jul; 19(4):210-215. PubMed ID: 29566583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experience with the cochlear miniature speech processor in adults and children together with a comparison of unipolar and bipolar modes.
    Lehnhardt E; Gnadeberg D; Battmer RD; von Wallenberg E
    ORL J Otorhinolaryngol Relat Spec; 1992; 54(6):308-13. PubMed ID: 1475100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outcome evaluation on cochlear implant users with residual hearing.
    Neben N; Buechner A; Schuessler M; Lenarz T
    Cochlear Implants Int; 2018 Mar; 19(2):88-99. PubMed ID: 29214896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technical development of an implantable cochlear prosthesis in Canada.
    Harrison RV; van der Puije P; Duval F; Kunov H; Morris R
    J Otolaryngol; 1987 Oct; 16(5):311-5. PubMed ID: 3682053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harmonics-based bio-implantable telemetry system.
    Laskovski AN; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3196-9. PubMed ID: 19163386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.