These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19163384)

  • 21. Cochlear implant speech processor placement and compression effects on sound sensitivity and interaural level difference.
    Ricketts T; Grantham DW; D'Haese P; Edwards J; Barco A
    J Am Acad Audiol; 2006 Feb; 17(2):133-40. PubMed ID: 16640065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A low-noise low-power amplifier for implantable device for neural signal acquisition.
    Li MZ; Tang KT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3806-9. PubMed ID: 19965237
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A phone-assistive device based on Bluetooth technology for cochlear implant users.
    Qian H; Loizou PC; Dorman MF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):282-7. PubMed ID: 14518792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A programmable sound processor for advanced hearing aid research.
    McDermott H
    IEEE Trans Rehabil Eng; 1998 Mar; 6(1):53-9. PubMed ID: 9535523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benefit of a commercially available cochlear implant processor with dual-microphone beamforming: a multi-center study.
    Wolfe J; Parkinson A; Schafer EC; Gilden J; Rehwinkel K; Mansanares J; Coughlan E; Wright J; Torres J; Gannaway S
    Otol Neurotol; 2012 Jun; 33(4):553-60. PubMed ID: 22588233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IMES: an implantable myoelectric sensor.
    Troyk PR; DeMichele GA; Kerns DA; Weir RF
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1730-3. PubMed ID: 18002310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emotional and analytic music perception in cochlear implant users after optimizing the speech processor.
    Rosslau K; Spreckelmeyer KN; Saalfeld H; Westhofen M
    Acta Otolaryngol; 2012 Jan; 132(1):64-71. PubMed ID: 22026456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Better speech recognition with cochlear implants.
    Wilson BS; Finley CC; Lawson DT; Wolford RD; Eddington DK; Rabinowitz WM
    Nature; 1991 Jul; 352(6332):236-8. PubMed ID: 1857418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Application of implantable electronic prostheses for patients with hearing impairment].
    Lorens A; Piotrowska A; Skarzyński H; Obrycka A
    Pol Merkur Lekarski; 2005 Sep; 19(111):487-9. PubMed ID: 16358921
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cochlear implant microphone location affects speech recognition in diffuse noise.
    Kolberg ER; Sheffield SW; Davis TJ; Sunderhaus LW; Gifford RH
    J Am Acad Audiol; 2015 Jan; 26(1):51-8; quiz 109-10. PubMed ID: 25597460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contrasting benefits from contralateral implants and hearing aids in cochlear implant users.
    van Hoesel RJ
    Hear Res; 2012 Jun; 288(1-2):100-13. PubMed ID: 22226928
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cochlear implant simulator with independent representation of the full spiral ganglion.
    Grange JA; Culling JF; Harris NSL; Bergfeld S
    J Acoust Soc Am; 2017 Nov; 142(5):EL484. PubMed ID: 29195445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clinical evaluation of pitch perception from a monopolar cochlear implant.
    Smith L
    Biomed Sci Instrum; 1988; 24():153-9. PubMed ID: 3378090
    [No Abstract]   [Full Text] [Related]  

  • 34. Acceptance and fitting of the DUET device - a combined speech processor for electric acoustic stimulation.
    Helbig S; Baumann U
    Adv Otorhinolaryngol; 2010; 67():81-87. PubMed ID: 19955724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Digital X-ray stereophotogrammetry for cochlear implantation.
    Wang G; Skinner MW; Rubinstein JT; Howard MA; Vannier MW
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1120-30. PubMed ID: 10943062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low power digital communication in implantable devices using volume conduction of biological tissues.
    Yao N; Lee HN; Sclabassi RJ; Sun M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6249-52. PubMed ID: 17947184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The nucleus multi-channel implantable hearing prosthesis.
    Crosby PA; Seligman PM; Patrick JF; Kuzma JA; Money DK; Ridler J; Dowell R
    Acta Otolaryngol Suppl; 1984; 411():111-4. PubMed ID: 6596833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benefits of the HiRes 120 coding strategy combined with the Harmony processor in an adult European multicentre study.
    Büchner A; Lenarz T; Boermans PP; Frijns JH; Mancini P; Filipo R; Fielden C; Cooper H; Eklöf M; Freijd A; Lombaard S; Meerton L; Pickerill M; Vanat Z; Wesarg T; Aschendorff A; Kienast B; Boyle P; Arnold L; Meyer B; Sterkers O; Müller-Deile J; Ambrosch P; Helbig S; Frachet B; Gallego S; Truy E; Jeffs E; Morant A; Marco J
    Acta Otolaryngol; 2012 Feb; 132(2):179-87. PubMed ID: 22074015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinal prosthesis.
    Weiland JD; Liu W; Humayun MS
    Annu Rev Biomed Eng; 2005; 7():361-401. PubMed ID: 16004575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of the Harmony™ behind-the-ear processor with the first generation of Advanced Bionics™ implant systems.
    Brendel M; Rottmann T; Lenarz T; Buechner A
    Cochlear Implants Int; 2013 Jan; 14(1):36-44. PubMed ID: 23340091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.