These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19163448)

  • 1. A hybrid ultrasonic motor and electrorheological fluid clutch actuator for force-feedback in MRI/fMRI.
    Chapuis D; Gassert R; Burdet E; Bleuler H
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3438-42. PubMed ID: 19163448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Signal-to-noise ratio evaluation of magnetic resonance images in the presence of an ultrasonic motor.
    Shokrollahi P; Drake JM; Goldenberg AA
    Biomed Eng Online; 2017 Apr; 16(1):45. PubMed ID: 28410615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliable assessment of lower limb motor representations with fMRI: use of a novel MR compatible device for real-time monitoring of ankle, knee and hip torques.
    Newton JM; Dong Y; Hidler J; Plummer-D'Amato P; Marehbian J; Albistegui-Dubois RM; Woods RP; Dobkin BH
    Neuroimage; 2008 Oct; 43(1):136-46. PubMed ID: 18675363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on observed ultrasonic motor-induced magnetic resonance imaging (MRI) artifacts.
    Shokrollahi P; Drake JM; Goldenberg AA
    Biomed J; 2019 Apr; 42(2):116-123. PubMed ID: 31130247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance magneto-rheological clutches for direct-drive actuation: Design and development.
    Pisetskiy S; Kermani M
    J Intell Mater Syst Struct; 2021 Dec; 32(20):2582-2600. PubMed ID: 34764629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR_CHIROD v.2: magnetic resonance compatible smart hand rehabilitation device for brain imaging.
    Khanicheh A; Mintzopoulos D; Weinberg B; Tzika AA; Mavroidis C
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):91-8. PubMed ID: 18303810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and validation of a MR-compatible pneumatic manipulandum.
    Suminski AJ; Zimbelman JL; Scheidt RA
    J Neurosci Methods; 2007 Jul; 163(2):255-66. PubMed ID: 17498811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Control of Multi-Plate MR Clutch Featuring Friction and Magnetic Field Control Modes.
    Park JY; Oh JS; Kim YC
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches to creating and controlling motion in MRI.
    Fischer GS; Cole G; Su H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6687-90. PubMed ID: 22255873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. fMRI-compatible rehabilitation hand device.
    Khanicheh A; Muto A; Triantafyllou C; Weinberg B; Astrakas L; Tzika A; Mavroidis C
    J Neuroeng Rehabil; 2006 Oct; 3():24. PubMed ID: 17022828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A variable torque motor compatible with magnetic resonance imaging.
    Roeck WW; Ha SH; Farmaka S; Nalcioglu O
    Rev Sci Instrum; 2009 Apr; 80(4):046108. PubMed ID: 19405704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention.
    Chen Y; Kwok KW; Tse ZT
    Ann Biomed Eng; 2014 Sep; 42(9):1823-33. PubMed ID: 24957635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Piezoelectric actuator design for MR elastography: implementation and vibration issues.
    Tse ZT; Chan YJ; Janssen H; Hamed A; Young I; Lamperth M
    Int J Med Robot; 2011 Sep; 7(3):353-60. PubMed ID: 21793149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of echo spacing and readout bandwidth on basic performances of EPI-fMRI acquisition sequences implemented on two 1.5 T MR scanner systems.
    Giannelli M; Diciotti S; Tessa C; Mascalchi M
    Med Phys; 2010 Jan; 37(1):303-10. PubMed ID: 20175493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted brain activation using an MR-compatible wrist torque measurement device and isometric motor tasks during functional magnetic resonance imaging.
    Vlaar MP; Mugge W; Groot PFC; Sharifi S; Bour LJ; van der Helm FCT; van Rootselaar AF; Schouten AC
    Magn Reson Imaging; 2016 Jul; 34(6):795-802. PubMed ID: 26968144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Spider-Inspired Rotary-Rolling Diaphragm Actuator with Linear Torque Characteristic and High Mechanical Efficiency.
    Hepp J; Badri-Spröwitz A
    Soft Robot; 2022 Apr; 9(2):364-375. PubMed ID: 34166108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clutchable series-elastic actuator: design of a robotic knee prosthesis for minimum energy consumption.
    Rouse EJ; Mooney LM; Martinez-Villalpando EC; Herr HM
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650383. PubMed ID: 24187202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimal control strategy for hybrid actuator systems: Application to an artificial muscle with electric motor assist.
    Ishihara K; Morimoto J
    Neural Netw; 2018 Mar; 99():92-100. PubMed ID: 29414537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and development of magnetorheological fluid-based passive actuator.
    Shokrollahi E; Price K; Drake JM; Goldenberg AA
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4883-6. PubMed ID: 26737387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Torque Contribution to Haptic Rendering of Virtual Textures.
    Pedram SA; Klatzky RL; Berkelman P
    IEEE Trans Haptics; 2017; 10(4):567-579. PubMed ID: 28287982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.