These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19163517)

  • 1. Modeling and identification of human neuromusculoskeletal network based on biomechanical property of muscle.
    Murai A; Yamane K; Nakamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3706-9. PubMed ID: 19163517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and identifying the somatic reflex network of the human neuromuscular system.
    Murai A; Yamane K; Nakamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2717-21. PubMed ID: 18002556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic modeling and identification of the human neuromuscular network.
    Nakamura Y; Yamane K; Murai A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():99-105. PubMed ID: 17946784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study.
    Di Russo A; Stanev D; Armand S; Ijspeert A
    PLoS Comput Biol; 2021 May; 17(5):e1008594. PubMed ID: 34010288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neuromusculoskeletal model exploring peripheral mechanism of tremor.
    Zhang D; Ang WT; Poignet P
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3715-9. PubMed ID: 19163519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and Identification of a Realistic Spiking Neural Network and Musculoskeletal Model of the Human Arm, and an Application to the Stretch Reflex.
    Sreenivasa M; Ayusawa K; Nakamura Y
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):591-602. PubMed ID: 26394432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of a one-link arm by burst signal generators.
    Kim J; Hemami H
    Biol Cybern; 1995 Jun; 73(1):37-47. PubMed ID: 7654849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromechanic: a computational platform for simulation and analysis of the neural control of movement.
    Bunderson NE; Bingham JT; Sohn MH; Ting LH; Burkholder TJ
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1015-27. PubMed ID: 23027632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise.
    Guilhem G; Cornu C; Guével A
    Ann Phys Rehabil Med; 2010 Jun; 53(5):319-41. PubMed ID: 20542752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflex responses at the human ankle: the importance of tendon compliance.
    Rack PM; Ross HF; Thilmann AF; Walters DK
    J Physiol; 1983 Nov; 344():503-24. PubMed ID: 6228648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring peripheral mechanism of tremor on neuromusculoskeletal model: a general simulation study.
    Zhang D; Poignet P; Bo AP; Ang WT
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2359-69. PubMed ID: 19535320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMClab, a model to assess the contributions of muscle visco-elasticity and afferent feedback to joint dynamics.
    Schouten AC; Mugge W; van der Helm FC
    J Biomech; 2008; 41(8):1659-67. PubMed ID: 18457842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tendon network of the fingers performs anatomical computation at a macroscopic scale.
    Valero-Cuevas FJ; Yi JW; Brown D; McNamara RV; Paul C; Lipson H
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 2):1161-6. PubMed ID: 17549909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning methods to support personalized neuromusculoskeletal modelling.
    Saxby DJ; Killen BA; Pizzolato C; Carty CP; Diamond LE; Modenese L; Fernandez J; Davico G; Barzan M; Lenton G; da Luz SB; Suwarganda E; Devaprakash D; Korhonen RK; Alderson JA; Besier TF; Barrett RS; Lloyd DG
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1169-1185. PubMed ID: 32676934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image-based musculoskeletal modeling: applications, advances, and future opportunities.
    Blemker SS; Asakawa DS; Gold GE; Delp SL
    J Magn Reson Imaging; 2007 Feb; 25(2):441-51. PubMed ID: 17260405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer modeling and simulation of human movement.
    Pandy MG
    Annu Rev Biomed Eng; 2001; 3():245-73. PubMed ID: 11447064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.