BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19163548)

  • 1. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications.
    Panoulas KI; Hadjileontiadis LJ; Panas SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3832-5. PubMed ID: 19163548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution EEG techniques for brain-computer interface applications.
    Cincotti F; Mattia D; Aloise F; Bufalari S; Astolfi L; De Vico Fallani F; Tocci A; Bianchi L; Marciani MG; Gao S; Millan J; Babiloni F
    J Neurosci Methods; 2008 Jan; 167(1):31-42. PubMed ID: 17706292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear classification of low-resolution EEG patterns produced by imagined hand movements.
    Babiloni F; Cincotti F; Lazzarini L; Millán J; Mouriño J; Varsta M; Heikkonen J; Bianchi L; Marciani MG
    IEEE Trans Rehabil Eng; 2000 Jun; 8(2):186-8. PubMed ID: 10896181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.
    Pfurtscheller G; Flotzinger D; Pregenzer M; Wolpaw JR; McFarland D
    Med Prog Technol; 1995-1996; 21(3):111-21. PubMed ID: 8776708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interface technology: a review of the Second International Meeting.
    Vaughan TM; Heetderks WJ; Trejo LJ; Rymer WZ; Weinrich M; Moore MM; Kübler A; Dobkin BH; Birbaumer N; Donchin E; Wolpaw EW; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):94-109. PubMed ID: 12899247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bristle-sensors--low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications.
    Grozea C; Voinescu CD; Fazli S
    J Neural Eng; 2011 Apr; 8(2):025008. PubMed ID: 21436526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000.
    Wilson JA; Schalk G; Walton LM; Williams JC
    J Vis Exp; 2009 Jul; (29):. PubMed ID: 19641479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BCI Competition 2003--Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements.
    Lemm S; Schäfer C; Curio G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1077-80. PubMed ID: 15188882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous EEG classification during motor imagery--simulation of an asynchronous BCI.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):258-65. PubMed ID: 15218939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of optimal location of EEG reference electrode for motor imagery based BCI using fMRI.
    Choi SH; Lee M; Wang Y; Hong B
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1193-6. PubMed ID: 17946448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research of movement imagery EEG based on Hilbert-Huang transform and BP neural network].
    Jin H; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):249-53. PubMed ID: 23858742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Development of practicality of EEG-based brain-computer interface].
    Lin H; He Q; Yan Q; Feng Z; Wu B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):702-6. PubMed ID: 20649048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal spatial resolution of epidural and subdural electrode arrays for brain-machine interface applications.
    Slutzky MW; Jordan LR; Miller LE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3771-4. PubMed ID: 19163532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell-phone-based brain-computer interface for communication in daily life.
    Wang YT; Wang Y; Jung TP
    J Neural Eng; 2011 Apr; 8(2):025018. PubMed ID: 21436517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCI.
    Spüler M; Bensch M; Kleih S; Rosenstiel W; Bogdan M; Kübler A
    Clin Neurophysiol; 2012 Jul; 123(7):1328-37. PubMed ID: 22244309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-paced brain-computer interface for controlling a robot simulator: an online event labelling paradigm and an extended Kalman filter based algorithm for online training.
    Tsui CS; Gan JQ; Roberts SJ
    Med Biol Eng Comput; 2009 Mar; 47(3):257-65. PubMed ID: 19225819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation.
    Sykacek P; Roberts SJ; Stokes M
    IEEE Trans Biomed Eng; 2004 May; 51(5):719-27. PubMed ID: 15132497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional source separation and hand cortical representation for a brain-computer interface feature extraction.
    Tecchio F; Porcaro C; Barbati G; Zappasodi F
    J Physiol; 2007 May; 580(Pt.3):703-21. PubMed ID: 17331989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.