BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 19163592)

  • 1. An optimization based approach embedded in a fuzzy connectivity algorithm for airway tree segmentation.
    Yousefi Rizi F; Ahmadian A; Fatemizadeh E; Alirezaie J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4011-4. PubMed ID: 19163592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1529-39. PubMed ID: 16353370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.
    Xu Z; Bagci U; Foster B; Mansoor A; Udupa JK; Mollura DJ
    Med Image Anal; 2015 Aug; 24(1):1-17. PubMed ID: 26026778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smoothing lung segmentation surfaces in three-dimensional X-ray CT images using anatomic guidance.
    Ukil S; Reinhardt JM
    Acad Radiol; 2005 Dec; 12(12):1502-11. PubMed ID: 16321738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-aided detection and quantification of cavitary tuberculosis from CT scans.
    Xu Z; Bagci U; Kubler A; Luna B; Jain S; Bishai WR; Mollura DJ
    Med Phys; 2013 Nov; 40(11):113701. PubMed ID: 24320475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coronary artery segmentation and skeletonization based on competing fuzzy connectedness tree.
    Wang C; Smedby O
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):311-8. PubMed ID: 18051073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images.
    Aykac D; Hoffman EA; McLennan G; Reinhardt JM
    IEEE Trans Med Imaging; 2003 Aug; 22(8):940-50. PubMed ID: 12906248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A three-stage method for the 3D reconstruction of the tracheobronchial tree from CT scans.
    Rosell J; Cabras P
    Comput Med Imaging Graph; 2013; 37(7-8):430-7. PubMed ID: 23981684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional segmentation and skeletonization to build an airway tree data structure for small animals.
    Chaturvedi A; Lee Z
    Phys Med Biol; 2005 Apr; 50(7):1405-19. PubMed ID: 15798332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minimally interactive segmentation of 4D dynamic upper airway MR images via fuzzy connectedness.
    Tong Y; Udupa JK; Odhner D; Wu C; Sin S; Wagshul ME; Arens R
    Med Phys; 2016 May; 43(5):2323. PubMed ID: 27147344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic segmentation and recognition of lungs and lesion from CT scans of thorax.
    Kakar M; Olsen DR
    Comput Med Imaging Graph; 2009 Jan; 33(1):72-82. PubMed ID: 19059759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Live-wire-based 3D segmentation method.
    Wiecławek W; Pietka E
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5646-9. PubMed ID: 18003293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional lung tumor segmentation from x-ray computed tomography using sparse field active models.
    Awad J; Owrangi A; Villemaire L; O'Riordan E; Parraga G; Fenster A
    Med Phys; 2012 Feb; 39(2):851-65. PubMed ID: 22320795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated liver segmentation from a postmortem CT scan based on a statistical shape model.
    Saito A; Yamamoto S; Nawano S; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):205-221. PubMed ID: 27659283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of airways in lungs using projections in 3-D CT angiography images.
    Babin D; Vansteenkiste E; Pizurica A; Philips W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3162-5. PubMed ID: 21096807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Segmentation and quantitative analysis of intrathoracic airway trees from computed tomography images.
    Tschirren J; Hoffman EA; McLennan G; Sonka M
    Proc Am Thorac Soc; 2005; 2(6):484-7, 503-4. PubMed ID: 16352753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vessel-guided airway tree segmentation: A voxel classification approach.
    Lo P; Sporring J; Ashraf H; Pedersen JJ; de Bruijne M
    Med Image Anal; 2010 Aug; 14(4):527-38. PubMed ID: 20395163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated system for three-dimensional bronchial morphology analysis using volumetric multidetector computed tomography of the chest.
    Venkatraman R; Raman R; Raman B; Moss RB; Rubin GD; Mathers LH; Robinson TE
    J Digit Imaging; 2006 Jun; 19(2):132-9. PubMed ID: 16341571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.