These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19163619)

  • 1. Functional-MRI correlates of cued slow-eye-closure and task non-responsiveness during visuomotor tracking.
    Poudel GR; Jones RD; Innes CR; Davidson PR; Watts R; Signal T; Bones PJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4122-5. PubMed ID: 19163619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of BOLD changes due to cued eye-closure and stopping during a continuous visuomotor task via model-based and model-free approaches.
    Poudel GR; Jones RD; Innes CR; Watts R; Davidson PR; Bones PJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Oct; 18(5):479-88. PubMed ID: 20525535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. fMRI correlates of behavioural microsleeps during a continuous visuomotor task.
    Poudel GR; Jones RD; Innes CR; Watts R; Signal TL; Bones PJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2919-22. PubMed ID: 19964791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical fMRI activation produced by attentive tracking of moving targets.
    Culham JC; Brandt SA; Cavanagh P; Kanwisher NG; Dale AM; Tootell RB
    J Neurophysiol; 1998 Nov; 80(5):2657-70. PubMed ID: 9819271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Losing the struggle to stay awake: divergent thalamic and cortical activity during microsleeps.
    Poudel GR; Innes CR; Bones PJ; Watts R; Jones RD
    Hum Brain Mapp; 2014 Jan; 35(1):257-69. PubMed ID: 23008180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conscious but not thinking-Mind-blanks during visuomotor tracking: An fMRI study of endogenous attention lapses.
    Zaky MH; Shoorangiz R; Poudel GR; Yang L; Innes CRH; Jones RD
    Hum Brain Mapp; 2024 Aug; 45(11):e26781. PubMed ID: 39023172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-varying functional connectivity for understanding the neural basis of behavioral microsleeps.
    Toppi J; Astolfi L; Poudel GR; Babiloni F; Macchiusi L; Mattia D; Salinari S; Jones RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4708-11. PubMed ID: 23366979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays.
    Peuskens H; Claeys KG; Todd JT; Norman JF; Van Hecke P; Orban GA
    J Cogn Neurosci; 2004 May; 16(4):665-82. PubMed ID: 15165355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal evolution of neural activity and connectivity during microsleeps when rested and following sleep restriction.
    Poudel GR; Innes CRH; Jones RD
    Neuroimage; 2018 Jul; 174():263-273. PubMed ID: 29555427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human cortical areas underlying the perception of optic flow: brain imaging studies.
    Greenlee MW
    Int Rev Neurobiol; 2000; 44():269-92. PubMed ID: 10605650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between behavioural microsleeps, visuomotor performance and EEG theta.
    Poudel GR; Innes CR; Bones PJ; Jones RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4452-5. PubMed ID: 21095769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of state- and strength-based perception.
    Aly M; Ranganath C; Yonelinas AP
    J Cogn Neurosci; 2014 Apr; 26(4):792-809. PubMed ID: 24283493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functional anatomy of attention to visual motion. A functional MRI study.
    Büchel C; Josephs O; Rees G; Turner R; Frith CD; Friston KJ
    Brain; 1998 Jul; 121 ( Pt 7)():1281-94. PubMed ID: 9679780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilateral dorsal fronto-parietal areas are associated with integration of visual motion information and timed motor action.
    de Azevedo Neto RM; Amaro Júnior E
    Behav Brain Res; 2018 Jan; 337():91-98. PubMed ID: 28964911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Right Temporoparietal Junction Supports Speech Tracking During Selective Listening: Evidence from Concurrent EEG-fMRI.
    Puschmann S; Steinkamp S; Gillich I; Mirkovic B; Debener S; Thiel CM
    J Neurosci; 2017 Nov; 37(47):11505-11516. PubMed ID: 29061698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinotopy and attention in human occipital, temporal, parietal, and frontal cortex.
    Saygin AP; Sereno MI
    Cereb Cortex; 2008 Sep; 18(9):2158-68. PubMed ID: 18234687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stages of self-motion processing in primate posterior parietal cortex.
    Bremmer F; Duhamel JR; Ben Hamed S; Graf W
    Int Rev Neurobiol; 2000; 44():173-98. PubMed ID: 10605646
    [No Abstract]   [Full Text] [Related]  

  • 19. Visual gravity cues in the interpretation of biological movements: neural correlates in humans.
    Maffei V; Indovina I; Macaluso E; Ivanenko YP; A Orban G; Lacquaniti F
    Neuroimage; 2015 Jan; 104():221-30. PubMed ID: 25315789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct representations in occipito-temporal, parietal, and premotor cortex during action perception revealed by fMRI and computational modeling.
    Urgen BA; Pehlivan S; Saygin AP
    Neuropsychologia; 2019 Apr; 127():35-47. PubMed ID: 30772426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.