These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 19163659)
1. Development of virtual reality exercise of hand motion assist robot for rehabilitation therapy by patient self-motion control. Ueki S; Nishimoto Y; Abe M; Kawasaki H; Ito S; Ishigure Y; Mizumoto J; Ojika T Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4282-5. PubMed ID: 19163659 [TBL] [Abstract][Full Text] [Related]
2. The Combined Effects of Adaptive Control and Virtual Reality on Robot-Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study. Huang X; Naghdy F; Naghdy G; Du H; Todd C J Stroke Cerebrovasc Dis; 2018 Jan; 27(1):221-228. PubMed ID: 28919312 [TBL] [Abstract][Full Text] [Related]
3. Control design and implementation of a novel master-slave surgery robot system, MicroHand A. Sang H; Wang S; Li J; He C; Zhang L; Wang X Int J Med Robot; 2011 Sep; 7(3):334-47. PubMed ID: 21732498 [TBL] [Abstract][Full Text] [Related]
4. Virtual reality-enhanced stroke rehabilitation. Jack D; Boian R; Merians AS; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H IEEE Trans Neural Syst Rehabil Eng; 2001 Sep; 9(3):308-18. PubMed ID: 11561668 [TBL] [Abstract][Full Text] [Related]
5. Development of hand rehabilitation system for paralysis patient - universal design using wire-driven mechanism. Yamaura H; Matsushita K; Kato R; Yokoi H Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7122-5. PubMed ID: 19963950 [TBL] [Abstract][Full Text] [Related]
6. Virtual reality-augmented rehabilitation for patients following stroke. Merians AS; Jack D; Boian R; Tremaine M; Burdea GC; Adamovich SV; Recce M; Poizner H Phys Ther; 2002 Sep; 82(9):898-915. PubMed ID: 12201804 [TBL] [Abstract][Full Text] [Related]
7. Comparing "pick and place" task in spatial Augmented Reality versus non-immersive Virtual Reality for rehabilitation setting. Khademi M; Hondori HM; Dodakian L; Cramer S; Lopes CV Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4613-6. PubMed ID: 24110762 [TBL] [Abstract][Full Text] [Related]
8. Robotic assisted rehabilitation in Virtual Reality with the L-EXOS. Frisoli A; Bergamasco M; Carboncini MC; Rossi B Stud Health Technol Inform; 2009; 145():40-54. PubMed ID: 19592785 [TBL] [Abstract][Full Text] [Related]
9. Clinical effectiveness of combined virtual reality and robot assisted fine hand motion rehabilitation in subacute stroke patients. Huang X; Naghdy F; Naghdy G; Du H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():511-515. PubMed ID: 28813871 [TBL] [Abstract][Full Text] [Related]
10. Measurement of reaching movement with 6-DOF upper rehabilitation system 'Robotherapist'. Kikuchi T; Oda K; Isozumi S; Ohyama Y; Shichi N; Furusho J Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4262-5. PubMed ID: 19163654 [TBL] [Abstract][Full Text] [Related]
11. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221 [TBL] [Abstract][Full Text] [Related]
12. Virtual reality and a haptic master-slave set-up in post-stroke upper-limb rehabilitation. Houtsma JA; Van Houten FJ Proc Inst Mech Eng H; 2006 Aug; 220(6):715-8. PubMed ID: 16961191 [TBL] [Abstract][Full Text] [Related]
13. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics. Yun MH; Cannon D; Freivalds A; Thomas G IEEE Trans Syst Man Cybern B Cybern; 1997 Oct; 27(5):835-46. PubMed ID: 11542952 [TBL] [Abstract][Full Text] [Related]
14. Influence of New Technologies on Post-Stroke Rehabilitation: A Comparison of Armeo Spring to the Kinect System. Adomavičienė A; Daunoravičienė K; Kubilius R; Varžaitytė L; Raistenskis J Medicina (Kaunas); 2019 Apr; 55(4):. PubMed ID: 30970655 [TBL] [Abstract][Full Text] [Related]
15. Visuomotor discordance in virtual reality: effects on online motor control. Bagce HF; Saleh S; Adamovich SV; Tunik E Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7262-5. PubMed ID: 22256015 [TBL] [Abstract][Full Text] [Related]
16. Flexion-extension motion assistance using an upper limb motion-assist robot based on trajectory estimation of reaching movement. Yano K; Hashimura J; Aoki T; Nishimoto Y Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4599-602. PubMed ID: 19963848 [TBL] [Abstract][Full Text] [Related]
17. Reaching within video-capture virtual reality: using virtual reality as a motor control paradigm. Dvorkin AY; Shahar M; Weiss PL Cyberpsychol Behav; 2006 Apr; 9(2):133-6. PubMed ID: 16640465 [TBL] [Abstract][Full Text] [Related]
18. A virtual reality system integrated with robot-assisted haptics to simulate pinch-grip task: Motor ingredients for the assessment in chronic stroke. Yeh SC; Lee SH; Chan RC; Chen S; Rizzo A NeuroRehabilitation; 2014; 35(3):435-49. PubMed ID: 25227546 [TBL] [Abstract][Full Text] [Related]
19. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove. Ben-Tzvi P; Ma Z IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512 [TBL] [Abstract][Full Text] [Related]
20. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot. Hu Z; Yoon CH; Park SB; Jo YH Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]