These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19163666)

  • 1. Design framework for a simple robotic ankle evaluation and rehabilitation device.
    Syrseloudis CE; Emiris IZ; Maganaris CN; Lilas TE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4310-3. PubMed ID: 19163666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation.
    Malosio M; Negri SP; Pedrocchi N; Vicentini F; Caimmi M; Molinari Tosatti L
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3356-9. PubMed ID: 23366645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Test of a customized compliant ankle rehabilitation device in unpowered mode.
    Murphy P; Adolf G; Daly S; Bolton M; Maurice O; Bonia T; Mavroidis C; Yen SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3057-60. PubMed ID: 25570636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The added value of an actuated ankle-foot orthosis to restore normal gait function in patients with spinal cord injury: a systematic review.
    Duerinck S; Swinnen E; Beyl P; Hagman F; Jonkers I; Vaes P; Van Roy P
    J Rehabil Med; 2012 Apr; 44(4):299-309. PubMed ID: 22453771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke.
    Tyson SF; Sadeghi-Demneh E; Nester CJ
    Clin Rehabil; 2013 Oct; 27(10):879-91. PubMed ID: 23798747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis and quantitative evaluation of ankle-foot orthoses for foot drop in chronic hemiparetic patients.
    Zollo L; Zaccheddu N; Ciancio AL; Morrone M; Bravi M; Santacaterina F; Laineri Milazzo M; Guglielmelli E; Sterzi S
    Eur J Phys Rehabil Med; 2015 Apr; 51(2):185-96. PubMed ID: 25184801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Evaluation Index and Optimization Method for Ankle Rehabilitation Robots Based on Ankle-Foot Motion.
    Zhang J; Ma Z; Wei J; Yang S; Liu C; Guo S
    J Biomech Eng; 2023 May; 145(5):. PubMed ID: 36537826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.
    Chen G; Qi P; Guo Z; Yu H
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot Assisted Ankle Neuro-Rehabilitation: State of the art and Future Challenges.
    Hussain S; Jamwal PK; Vliet PV; Brown NAT
    Expert Rev Neurother; 2021 Jan; 21(1):111-121. PubMed ID: 33198522
    [No Abstract]   [Full Text] [Related]  

  • 12. The immediate effects of fitting and tuning solid ankle-foot orthoses in early stroke rehabilitation.
    Carse B; Bowers R; Meadows BC; Rowe P
    Prosthet Orthot Int; 2015 Dec; 39(6):454-62. PubMed ID: 24938770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics and workspace analysis of 4SPRR-SPR parallel robots.
    Luo L; Hou L; Zhang Q; Wei Y; Wu Y
    PLoS One; 2021; 16(1):e0239150. PubMed ID: 33471792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation.
    Park YL; Chen BR; PĂ©rez-Arancibia NO; Young D; Stirling L; Wood RJ; Goldfield EC; Nagpal R
    Bioinspir Biomim; 2014 Mar; 9(1):016007. PubMed ID: 24434598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a stiffness-adjustable ankle-foot orthosis and its effect on ankle joint kinematics in patients with stroke.
    Kobayashi T; Leung AK; Akazawa Y; Hutchins SW
    Gait Posture; 2011 Apr; 33(4):721-3. PubMed ID: 21376602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of dynamic entrainment with ankle mechanical perturbation to treat locomotor deficit.
    Ahn J; Hogan N
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3422-5. PubMed ID: 21097251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single joint robotic orthoses for gait rehabilitation: An educational technical review.
    Hussain S; Jamwal PK; Ghayesh MH
    J Rehabil Med; 2016 Apr; 48(4):333-8. PubMed ID: 26936800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of a robotic walking simulator for gait rehabilitation].
    Schmidt H; Sorowka D; Hesse S; Bernhardt R
    Biomed Tech (Berl); 2003 Oct; 48(10):281-6. PubMed ID: 14606269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the use of ankle-foot orthoses on thorax, spine, and pelvis kinematics during walking in children with cerebral palsy.
    Swinnen E; Baeyens JP; Van Mulders B; Verspecht J; Degelaen M
    Prosthet Orthot Int; 2018 Apr; 42(2):208-213. PubMed ID: 28486863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.