These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 19163704)
1. Real-time 3D image-guided HIFU therapy. Ziadloo A; Vaezy S Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4459-62. PubMed ID: 19163704 [TBL] [Abstract][Full Text] [Related]
2. Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Vaezy S; Shi X; Martin RW; Chi E; Nelson PI; Bailey MR; Crum LA Ultrasound Med Biol; 2001 Jan; 27(1):33-42. PubMed ID: 11295268 [TBL] [Abstract][Full Text] [Related]
3. Visual servoing for a US-guided therapeutic HIFU system by coagulated lesion tracking: a phantom study. Seo J; Koizumi N; Funamoto T; Sugita N; Yoshinaka K; Nomiya A; Homma Y; Matsumoto Y; Mitsuishi M Int J Med Robot; 2011 Jun; 7(2):237-47. PubMed ID: 21538772 [TBL] [Abstract][Full Text] [Related]
4. Real-time monitoring of HIFU treatment using pulse inversion. Song JH; Yoo Y; Song TK; Chang JH Phys Med Biol; 2013 Aug; 58(15):5333-50. PubMed ID: 23863761 [TBL] [Abstract][Full Text] [Related]
5. Annular phased-array high-intensity focused ultrasound device for image-guided therapy of uterine fibroids. Held RT; Zderic V; Nguyen TN; Vaezy S IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Feb; 53(2):335-48. PubMed ID: 16529108 [TBL] [Abstract][Full Text] [Related]
6. An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Chan AH; Fujimoto VY; Moore DE; Martin RW; Vaezy S Med Phys; 2002 Nov; 29(11):2611-20. PubMed ID: 12462728 [TBL] [Abstract][Full Text] [Related]
7. Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm(2)) intensity focused ultrasound beam using phase shift of ultrasound echoes. Karwat P; Kujawska T; Lewin PA; Secomski W; Gambin B; Litniewski J Ultrasonics; 2016 Feb; 65():211-9. PubMed ID: 26498063 [TBL] [Abstract][Full Text] [Related]
8. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound. Zhou Y; Gao XW J Acoust Soc Am; 2013 Aug; 134(2):1683-94. PubMed ID: 23927209 [TBL] [Abstract][Full Text] [Related]
9. Differential attenuation imaging for the characterization of high intensity focused ultrasound lesions. Ribault M; Chapelon JY; Cathignol D; Gelet A Ultrason Imaging; 1998 Jul; 20(3):160-77. PubMed ID: 9921617 [TBL] [Abstract][Full Text] [Related]
10. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms. Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751 [TBL] [Abstract][Full Text] [Related]
11. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound. Seo J; Koizumi N; Mitsuishi M; Sugita N Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 27995752 [TBL] [Abstract][Full Text] [Related]
12. Differential ultrasonic imaging for the characterization of lesions induced by high intensity focused ultrasound. Zhong H; Wan M; Jiang Y; Wang S Ultrasonics; 2006 Dec; 44 Suppl 1():e285-8. PubMed ID: 16844167 [TBL] [Abstract][Full Text] [Related]
13. Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback. Lin KH; Young SY; Hsu MC; Chan H; Chen YY; Lin WL Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2522-5. PubMed ID: 19163216 [TBL] [Abstract][Full Text] [Related]
14. Usefulness of US-CT 3D dual imaging for the planning and monitoring of hepatocellular carcinoma treatment using HIFU. Fukuda H; Numata K; Nozaki A; Morimoto M; Kondo M; Tanaka K; Maeda S; Yamagata J; Ohto M; Ito R; Sakamoto A; Zhu H; Wang ZB Eur J Radiol; 2011 Dec; 80(3):e306-10. PubMed ID: 21306847 [TBL] [Abstract][Full Text] [Related]
15. Real-Time Photoacoustic Thermometry Combined With Clinical Ultrasound Imaging and High-Intensity Focused Ultrasound. Kim J; Choi W; Park EY; Kang Y; Lee KJ; Kim HH; Kim WJ; Kim C IEEE Trans Biomed Eng; 2019 Dec; 66(12):3330-3338. PubMed ID: 30869607 [TBL] [Abstract][Full Text] [Related]
16. Influence of temperature variations on the average grayscale of B-mode images of HIFU-induced lesions. Marquez S; Leija L; Vera A Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5983-6. PubMed ID: 21097105 [TBL] [Abstract][Full Text] [Related]
17. Thermal Ablation and High-Resolution Imaging Using a Back-to-Back (BTB) Dual-Mode Ultrasonic Transducer: In Vivo Results. Lim HG; Kim H; Kim K; Park J; Kim Y; Yoo J; Heo D; Baik J; Park SM; Kim HH Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668260 [TBL] [Abstract][Full Text] [Related]
18. Hyperecho in ultrasound images of HIFU therapy: involvement of cavitation. Rabkin BA; Zderic V; Vaezy S Ultrasound Med Biol; 2005 Jul; 31(7):947-56. PubMed ID: 15972200 [TBL] [Abstract][Full Text] [Related]
19. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment. Zhang S; Wan M; Zhong H; Xu C; Liao Z; Liu H; Wang S Ultrasound Med Biol; 2009 Nov; 35(11):1828-44. PubMed ID: 19716225 [TBL] [Abstract][Full Text] [Related]
20. High frame rate ultrasound monitoring of high intensity focused ultrasound-induced temperature changes: a novel asynchronous approach. Liu HL; Huang SM; Li ML Med Phys; 2010 Nov; 37(11):5921-8. PubMed ID: 21158305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]