These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 19163713)

  • 1. Neuronal tuning in a brain-machine interface during Reinforcement Learning.
    Mahmoudi B; Digiovanna J; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4491-4. PubMed ID: 19163713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC
    PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coadaptive brain-machine interface via reinforcement learning.
    DiGiovanna J; Mahmoudi B; Fortes J; Principe JC; Sanchez JC
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):54-64. PubMed ID: 19224719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracting an evaluative feedback from the brain for adaptation of motor neuroprosthetic decoders.
    Mahmoudi B; Principe JC; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1682-5. PubMed ID: 21096396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method of concurrently visualizing states, values, and actions in reinforcement based brain machine interfaces.
    Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Sanchez JC; Principe JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5402-5. PubMed ID: 24110957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning.
    Cai Z; Feng Z; Zhou L; Ai C; Shao H; Yang X
    Comput Intell Neurosci; 2022; 2022():2341898. PubMed ID: 36210974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BMI cyberworkstation: enabling dynamic data-driven brain-machine interface research through cyberinfrastructure.
    Zhao M; Rattanatamrong P; DiGiovanna J; Mahmoudi B; Figueiredo RJ; Sanchez JC; Príncipe JC; Fortes JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():646-9. PubMed ID: 19162738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.
    Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton.
    Kiguchi K; Imada Y; Liyanage M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting co-adaptation for the design of symbiotic neuroprosthetic assistants.
    Sanchez JC; Mahmoudi B; DiGiovanna J; Principe JC
    Neural Netw; 2009 Apr; 22(3):305-15. PubMed ID: 19403263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.
    Pohlmeyer EA; Mahmoudi B; Geng S; Prins N; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4108-11. PubMed ID: 23366831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.
    Uchibe E; Doya K
    Neural Netw; 2008 Dec; 21(10):1447-55. PubMed ID: 19013054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.
    Mahmoudi B; Pohlmeyer EA; Prins NW; Geng S; Sanchez JC
    J Neural Eng; 2013 Dec; 10(6):066005. PubMed ID: 24100047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotropic-sequence-order learning in a closed-loop behavioural system.
    Porr B; Wörgötter F
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2225-44. PubMed ID: 14599317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature extraction and unsupervised classification of neural population reward signals for reinforcement based BMI.
    Prins NW; Geng S; Pohlmeyer EA; Mahmoudi B; Sanchez JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5250-3. PubMed ID: 24110920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. My thoughts through a robot's eyes: an augmented reality-brain-machine interface.
    Kansaku K; Hata N; Takano K
    Neurosci Res; 2010 Feb; 66(2):219-22. PubMed ID: 19853630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.