BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19163718)

  • 1. A mobile robot therapist for under-supervised training with robot/computer assisted motivating systems.
    Shakya Y; Johnson MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4511-4. PubMed ID: 19163718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation.
    Johnson MJ; Feng X; Johnson LM; Winters JM
    J Neuroeng Rehabil; 2007 Mar; 4():6. PubMed ID: 17331243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-cost monitoring of patients during unsupervised robot/computer assisted motivating stroke rehabilitation.
    Johnson MJ; Shakya Y; Strachota E; Ahamed SI
    Biomed Tech (Berl); 2011 Feb; 56(1):5-9. PubMed ID: 21117891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the TheraDrive system for robot/computer assisted motivating rehabilitation after stroke.
    Ruparel R; Johnson MJ; Strachota E; McGuire J; Tchekanov G
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():811-4. PubMed ID: 19963475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study of TheraDrive: a low-cost game-based environment for the delivery of upper arm stroke therapy.
    Johnson MJ; Ramachandran B; Paranjape RP; Kosasih JB
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():695-8. PubMed ID: 17946851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hand function recovery in chronic stroke with HEXORR robotic training: A case series.
    Godfrey SB; Schabowsky CN; Holley RJ; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4485-8. PubMed ID: 21095777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of an upper limb stroke rehabilitation robot: identification of clinical practices and design requirements through a survey of therapists.
    Lu EC; Wang RH; Hebert D; Boger J; Galea MP; Mihailidis A
    Disabil Rehabil Assist Technol; 2011; 6(5):420-31. PubMed ID: 21184626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards extended virtual presence of the therapist in stroke rehabilitation.
    Jung HT; Takahashi T; Choe YK; Baird J; Foster T; Grupen RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650345. PubMed ID: 24187164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robotic system to train activities of daily living in a virtual environment.
    Guidali M; Duschau-Wicke A; Broggi S; Klamroth-Marganska V; Nef T; Riener R
    Med Biol Eng Comput; 2011 Oct; 49(10):1213-23. PubMed ID: 21796422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gesture therapy: a vision-based system for upper extremity stroke rehabilitation.
    Sucar L; Luis R; Leder R; Hernandez J; Sanchez I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3690-3. PubMed ID: 21096856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment-driven selection and adaptation of exercise difficulty in robot-assisted therapy: a pilot study with a hand rehabilitation robot.
    Metzger JC; Lambercy O; Califfi A; Dinacci D; Petrillo C; Rossi P; Conti FM; Gassert R
    J Neuroeng Rehabil; 2014 Nov; 11():154. PubMed ID: 25399249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Home stroke rehabilitation for the upper limbs.
    Willmann RD; Lanfermann G; Saini P; Timmermans A; te Vrugt J; Winter S
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4015-8. PubMed ID: 18002880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is robot-aided sensorimotor training in stroke rehabilitation a realistic option?
    Volpe BT; Krebs HI; Hogan N
    Curr Opin Neurol; 2001 Dec; 14(6):745-52. PubMed ID: 11723383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pneumatic robotic device for early delivering of rehabilitation therapy.
    Morales R; Badesa FJ; García N; Sabater JM; Pérez C; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7258-61. PubMed ID: 22256014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A prototype home robot with an ambient facial interface to improve drug compliance.
    Takacs B; Hanak D
    J Telemed Telecare; 2008; 14(7):393-5. PubMed ID: 18852325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caregiver and social assistant robot for rehabilitation and coaching for the elderly.
    Pérez PJ; Garcia-Zapirain B; Mendez-Zorrilla A
    Technol Health Care; 2015; 23(3):351-7. PubMed ID: 25669209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and feasibility study of a sensory-enhanced robot-aided motor training in stroke rehabilitation.
    Liu W; Mukherjee M; Tsaur Y; Kim SH; Liu H; Natarajan P; Agah A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5965-8. PubMed ID: 19964884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in upper limb stroke rehabilitation: a technology push.
    Loureiro RC; Harwin WS; Nagai K; Johnson M
    Med Biol Eng Comput; 2011 Oct; 49(10):1103-18. PubMed ID: 21773806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.