These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19163745)

  • 1. Learning brain connectivity with the false-discovery-rate-controlled PC-algorithm.
    Li J; Wang Z; McKeown MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4617-20. PubMed ID: 19163745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computationally efficient, exploratory approach to brain connectivity incorporating false discovery rate control, a priori knowledge, and group inference.
    Liu A; Li J; Wang ZJ; McKeown MJ
    Comput Math Methods Med; 2012; 2012():967380. PubMed ID: 23251232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian networks for fMRI: a primer.
    Mumford JA; Ramsey JD
    Neuroimage; 2014 Feb; 86():573-82. PubMed ID: 24140939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamic programming high-order Dynamic Bayesian Networks learning for identifying effective connectivity in human brain from fMRI.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Jun; 285():33-44. PubMed ID: 28495368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning effective brain connectivity with dynamic Bayesian networks.
    Rajapakse JC; Zhou J
    Neuroimage; 2007 Sep; 37(3):749-60. PubMed ID: 17644415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probabilistic framework for brain connectivity from functional MR images.
    Rajapakse JC; Wang Y; Zheng X; Zhou J
    IEEE Trans Med Imaging; 2008 Jun; 27(6):825-33. PubMed ID: 18541489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bayesian approach to modeling dynamic effective connectivity with fMRI data.
    Bhattacharya S; Ringo Ho MH; Purkayastha S
    Neuroimage; 2006 Apr; 30(3):794-812. PubMed ID: 16364661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Bayesian network modeling of fMRI: a comparison of group-analysis methods.
    Li J; Wang ZJ; Palmer SJ; McKeown MJ
    Neuroimage; 2008 Jun; 41(2):398-407. PubMed ID: 18406629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved brain effective connectivity modelling by dynamic Bayesian networks.
    Ulusoy I; Geduk S
    J Neurosci Methods; 2024 Sep; 409():110211. PubMed ID: 38968975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic effective connectivity in resting state fMRI.
    Park HJ; Friston KJ; Pae C; Park B; Razi A
    Neuroimage; 2018 Oct; 180(Pt B):594-608. PubMed ID: 29158202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework for group analysis of fMRI data using dynamic Bayesian networks.
    Li J; Wang ZJ; McKeown MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5992-5. PubMed ID: 18003379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
    Zhu Y; Cribben I
    Brain Connect; 2018 Apr; 8(3):139-165. PubMed ID: 29634321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates.
    Hinne M; Janssen RJ; Heskes T; van Gerven MA
    PLoS Comput Biol; 2015 Nov; 11(11):e1004534. PubMed ID: 26540089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm.
    Iyer SP; Shafran I; Grayson D; Gates K; Nigg JT; Fair DA
    Neuroimage; 2013 Jul; 75():165-175. PubMed ID: 23501054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian approach to determining connectivity of the human brain.
    Patel RS; Bowman FD; Rilling JK
    Hum Brain Mapp; 2006 Mar; 27(3):267-76. PubMed ID: 16092131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.
    Guo X; Liu B; Chen L; Chen G; Pan Y; Zhang J
    Comput Math Methods Med; 2016; 2016():3279050. PubMed ID: 27034708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using partial correlation to enhance structural equation modeling of functional MRI data.
    Marrelec G; Horwitz B; Kim J; Pélégrini-Issac M; Benali H; Doyon J
    Magn Reson Imaging; 2007 Oct; 25(8):1181-9. PubMed ID: 17475433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study of effective connectivity based on dynamic causal modeling in subtraction calculation task].
    Zhang Y; Chen C; Lu G; Zhang Z; Yu H; Huang W; Chen Z; Zhong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Oct; 26(5):931-5, 940. PubMed ID: 19947462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.