These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 19163770)

  • 1. New wearable system for the step counting based on the codivilla-spring for daily activity monitoring in stroke rehabilitation.
    Giansanti D; Tiberi Y; Maccioni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4720-3. PubMed ID: 19163770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New wearable system for step-counting telemonitoring and telerehabilitation based on the Codivilla spring.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2008 Dec; 14(10):1096-100. PubMed ID: 19119833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the integration of novel wearable step-counters in gait telerehabilitation after stroke.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2009 Jan; 15(1):105-11. PubMed ID: 19199855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and construction of step counters for disable people: preliminary experience at the Italian Institute of Health.
    Maccioni G; Macellari V; Giansanti D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4927-9. PubMed ID: 18003111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Telemonitoring and telerehabilitation of patients with Parkinson's disease: health technology assessment of a novel wearable step counter.
    Giansanti D; Macellari V; Maccioni G
    Telemed J E Health; 2008; 14(1):76-83. PubMed ID: 18328028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel, user-friendly step counter for home telemonitoring of physical activity.
    Giansanti D; Maccioni G; Macellari V; Mattei E; Triventi M; Censi F; Calcagnini G; Bartolini P
    J Telemed Telecare; 2008; 14(7):345-8. PubMed ID: 18852314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in gait and plantar foot loading upon using vibrotactile wearable biofeedback system in patients with stroke.
    Ma CZ; Zheng YP; Lee WC
    Top Stroke Rehabil; 2018 Jan; 25(1):20-27. PubMed ID: 28950803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, construction and validation of a portable care system for the daily telerehabiliatation of gait.
    Giansanti D; Morelli S; Maccioni G; Brocco M
    Comput Methods Programs Biomed; 2013 Oct; 112(1):146-55. PubMed ID: 23891239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the design of a wearable system for fall-risk detection in telerehabilitation.
    Giansanti D; Morelli S; Maccioni G; Costantini G
    Telemed J E Health; 2009 Apr; 15(3):296-9. PubMed ID: 19382869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Validation of a Biofeedback Device to Improve Heel-to-Toe Gait in Seniors.
    Vadnerkar A; Figueiredo S; Mayo NE; Kearney RE
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):140-146. PubMed ID: 28186914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.
    Smith BT; Coiro DJ; Finson R; Betz RR; McCarthy J
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):22-9. PubMed ID: 12173736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using musculoskeletal modeling to evaluate the effect of ankle foot orthosis tuning on musculotendon dynamics: a case study.
    Choi H; Bjornson K; Fatone S; Steele KM
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):613-8. PubMed ID: 25640240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the Dual AFO on gait parameters in stroke patients.
    Hwang YI; An DH; Yoo WG
    NeuroRehabilitation; 2012; 31(4):387-93. PubMed ID: 23232162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-Term Effect of Prosthesis Transforming Sensory Modalities on Walking in Stroke Patients with Hemiparesis.
    Owaki D; Sekiguchi Y; Honda K; Ishiguro A; Izumi S
    Neural Plast; 2016; 2016():6809879. PubMed ID: 27547456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Singapore Tele-technology Aided Rehabilitation in Stroke (STARS) trial: protocol of a randomized clinical trial on tele-rehabilitation for stroke patients.
    Koh GC; Yen SC; Tay A; Cheong A; Ng YS; De Silva DA; Png C; Caves K; Koh K; Kumar Y; Phan SW; Tai BC; Chen C; Chew E; Chao Z; Chua CE; Koh YS; Hoenig H
    BMC Neurol; 2015 Sep; 15():161. PubMed ID: 26341358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable motion sensors to continuously measure real-world physical activities.
    Dobkin BH
    Curr Opin Neurol; 2013 Dec; 26(6):602-8. PubMed ID: 24136126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback system based on plantar pressure for monitoring toe-walking strides in children with cerebral palsy.
    Pu F; Fan X; Yang Y; Chen W; Li S; Li D; Fan Y
    Am J Phys Med Rehabil; 2014 Feb; 93(2):122-9. PubMed ID: 24434888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wearable resistive robot facilitates locomotor adaptations during gait.
    Washabaugh EP; Krishnan C
    Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Support vector machine for classification of walking conditions of persons after stroke with dropped foot.
    Lau HY; Tong KY; Zhu H
    Hum Mov Sci; 2009 Aug; 28(4):504-14. PubMed ID: 19428134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantified self and human movement: a review on the clinical impact of wearable sensing and feedback for gait analysis and intervention.
    Shull PB; Jirattigalachote W; Hunt MA; Cutkosky MR; Delp SL
    Gait Posture; 2014; 40(1):11-9. PubMed ID: 24768525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.