These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19163773)

  • 21. Multimodal and Spectral Degradation Effects on Speech and Emotion Recognition in Adult Listeners.
    Ritter C; Vongpaisal T
    Trends Hear; 2018; 22():2331216518804966. PubMed ID: 30378469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Noise signal reduction in cochlear implant speech processors].
    Müller-Deile J
    HNO; 1995 Sep; 43(9):545-51. PubMed ID: 7591867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Voice Track multiband single-channel modified Wiener-filter noise reduction system for cochlear implants: patients' outcomes and subjective appraisal.
    Guevara N; Bozorg-Grayeli A; Bebear JP; Ardoint M; Saaï S; Gnansia D; Hoen M; Romanet P; Lavieille JP
    Int J Audiol; 2016 Aug; 55(8):431-8. PubMed ID: 27108635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neural-based vocoder implementation for evaluating cochlear implant coding strategies.
    El Boghdady N; Kegel A; Lai WK; Dillier N
    Hear Res; 2016 Mar; 333():136-149. PubMed ID: 26775182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using speech sounds to test functional spectral resolution in listeners with cochlear implants.
    Winn MB; Litovsky RY
    J Acoust Soc Am; 2015 Mar; 137(3):1430-42. PubMed ID: 25786954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Digital speech processing for cochlear implants.
    Dillier N; Bögli H; Spillmann T
    ORL J Otorhinolaryngol Relat Spec; 1992; 54(6):299-307. PubMed ID: 1475099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Speech recognition at simulated soft, conversational, and raised-to-loud vocal efforts by adults with cochlear implants.
    Skinner MW; Holden LK; Holden TA; Demorest ME; Fourakis MS
    J Acoust Soc Am; 1997 Jun; 101(6):3766-82. PubMed ID: 9193063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of binaural spectral resolution mismatch on Mandarin speech perception in simulated electric hearing.
    Chen F; Wong LL; Tahmina Q; Azimi B; Hu Y
    J Acoust Soc Am; 2012 Aug; 132(2):EL142-8. PubMed ID: 22894313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved neural representation of vowels in electric stimulation using desynchronizing pulse trains.
    Litvak L; Delgutte B; Eddington D
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):2099-111. PubMed ID: 14587608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of companding-based spectral enhancement using simulated cochlear-implant processing.
    Oxenham AJ; Simonson AM; Turicchia L; Sarpeshkar R
    J Acoust Soc Am; 2007 Mar; 121(3):1709-16. PubMed ID: 17407907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Speech intelligibility in cochlear implant simulations: Effects of carrier type, interfering noise, and subject experience.
    Whitmal NA; Poissant SF; Freyman RL; Helfer KS
    J Acoust Soc Am; 2007 Oct; 122(4):2376-88. PubMed ID: 17902872
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrodographic analysis and field evaluation of the Speak coding strategy.
    Dillier N; Bögli H; Lai WK
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():354-6. PubMed ID: 7668703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing sound localization deficits in bilateral cochlear-implant users and vocoder simulations with normal-hearing listeners.
    Jones H; Kan A; Litovsky RY
    Trends Hear; 2014 Nov; 18():. PubMed ID: 25385244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parameter selection to optimize speech recognition with the Nucleus implant.
    Skinner MW; Holden LK; Holden TA
    Otolaryngol Head Neck Surg; 1997 Sep; 117(3 Pt 1):188-95. PubMed ID: 9334764
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speech processing for multichannel cochlear implants: variations of the Spectral Maxima Sound Processor strategy.
    McKay CM; Vandali AE; McDermott HJ; Clark GM
    Acta Otolaryngol; 1994 Jan; 114(1):52-8. PubMed ID: 8128854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing.
    Azadpour M; Smith RL
    Hear Res; 2016 Dec; 342():48-57. PubMed ID: 27697486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Searching for the Sound of a Cochlear Implant: Evaluation of Different Vocoder Parameters by Cochlear Implant Users With Single-Sided Deafness.
    Karoui C; James C; Barone P; Bakhos D; Marx M; Macherey O
    Trends Hear; 2019; 23():2331216519866029. PubMed ID: 31533581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perceptually aligning apical frequency regions leads to more binaural fusion of speech in a cochlear implant simulation.
    Staisloff HE; Lee DH; Aronoff JM
    Hear Res; 2016 Jul; 337():59-64. PubMed ID: 27208791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cochlear implant optimized noise reduction.
    Mauger SJ; Arora K; Dawson PW
    J Neural Eng; 2012 Dec; 9(6):065007. PubMed ID: 23187159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.