These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19163773)

  • 41. Computational speech segregation based on an auditory-inspired modulation analysis.
    May T; Dau T
    J Acoust Soc Am; 2014 Dec; 136(6):3350. PubMed ID: 25480079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of continuous low-frequency harmonicity cues for interrupted speech perception in bimodal hearing.
    Oh SH; Donaldson GS; Kong YY
    J Acoust Soc Am; 2016 Apr; 139(4):1747. PubMed ID: 27106322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic formant tracking of noisy speech using temporal analysis on outputs from a nonlinear cochlear model.
    Deng L; Kheirallah I
    IEEE Trans Biomed Eng; 1993 May; 40(5):456-67. PubMed ID: 8225334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Subspace algorithms for noise reduction in cochlear implants.
    Loizou PC; Lobo A; Hu Y
    J Acoust Soc Am; 2005 Nov; 118(5):2791-3. PubMed ID: 16334894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The performance of different synthesis signals in acoustic models of cochlear implants.
    Strydom T; Hanekom JJ
    J Acoust Soc Am; 2011 Feb; 129(2):920-33. PubMed ID: 21361449
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis and synthesis of speech regarding cochlear implant.
    Carrat R
    Acta Otolaryngol Suppl; 1984; 411():85-94. PubMed ID: 6596855
    [No Abstract]   [Full Text] [Related]  

  • 48. Enhancing Chinese tone recognition by manipulating amplitude envelope: implications for cochlear implants.
    Luo X; Fu QJ
    J Acoust Soc Am; 2004 Dec; 116(6):3659-67. PubMed ID: 15658716
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of the acoustical dynamic range on speech recognition with cochlear implants.
    Cosendai G; Pelizzone M
    Audiology; 2001; 40(5):272-81. PubMed ID: 11688546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Speech perception of sine-wave signals by children with cochlear implants.
    Nittrouer S; Kuess J; Lowenstein JH
    J Acoust Soc Am; 2015 May; 137(5):2811-22. PubMed ID: 25994709
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.
    Friesen LM; Shannon RV; Baskent D; Wang X
    J Acoust Soc Am; 2001 Aug; 110(2):1150-63. PubMed ID: 11519582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spontaneous speech recognition using a statistical coarticulatory model for the vocal-tract-resonance dynamics.
    Deng L; Ma J
    J Acoust Soc Am; 2000 Dec; 108(6):3036-48. PubMed ID: 11144596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. New developments in speech pattern element hearing aids for the profoundly deaf.
    Faulkner A; Walliker JR; Howard IS; Ball V; Fourcin AJ
    Scand Audiol Suppl; 1993; 38():124-35. PubMed ID: 8153558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation.
    Lai YH; Chen F; Wang SS; Lu X; Tsao Y; Lee CH
    IEEE Trans Biomed Eng; 2017 Jul; 64(7):1568-1578. PubMed ID: 28113304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Speaker normalization for chinese vowel recognition in cochlear implants.
    Luo X; Fu QJ
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1358-61. PubMed ID: 16042003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved interaural timing of acoustic nerve stimulation affects sound localization in single-sided deaf cochlear implant users.
    Seebacher J; Franke-Trieger A; Weichbold V; Zorowka P; Stephan K
    Hear Res; 2019 Jan; 371():19-27. PubMed ID: 30439571
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Perception of vowels and prosody by cochlear implant recipients in noise.
    Van Zyl M; Hanekom JJ
    J Commun Disord; 2013; 46(5-6):449-64. PubMed ID: 24157128
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Effect of Interaural Mismatches on Contralateral Unmasking With Single-Sided Vocoders.
    Wess JM; Brungart DS; Bernstein JGW
    Ear Hear; 2017; 38(3):374-386. PubMed ID: 28002083
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of noise and noise reduction processing on the operation of the Nucleus-22 cochlear implant processor.
    Weiss MR
    J Rehabil Res Dev; 1993; 30(1):117-28. PubMed ID: 8263822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Speech perception, localization, and lateralization with bilateral cochlear implants.
    van Hoesel RJ; Tyler RS
    J Acoust Soc Am; 2003 Mar; 113(3):1617-30. PubMed ID: 12656396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.