These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19163800)

  • 21. Rapid prototyping of interactive software for automated instrumentation in rehabilitative therapy.
    Lim I; Walkup R; Vannier MW
    Biomed Instrum Technol; 1992; 26(3):209-14. PubMed ID: 1596650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced performance by a hybrid NIRS-EEG brain computer interface.
    Fazli S; Mehnert J; Steinbrink J; Curio G; Villringer A; Müller KR; Blankertz B
    Neuroimage; 2012 Jan; 59(1):519-29. PubMed ID: 21840399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid prototyping of an EEG-based brain-computer interface (BCI).
    Guger C; Schlögl A; Neuper C; Walterspacher D; Strein T; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):49-58. PubMed ID: 11482363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive schemes applied to online SVM for BCI data classification.
    Oskoei MA; Gan JQ; Hu H
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2600-3. PubMed ID: 19965221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Portable single-channel NIRS-based BMI system for motor disabilities' communication tools.
    Sagara K; Kido K; Ozawa K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():602-5. PubMed ID: 19963717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Describing different brain computer interface systems through a unique model: a UML implementation.
    Quitadamo LR; Marciani MG; Cardarilli GC; Bianchi L
    Neuroinformatics; 2008; 6(2):81-96. PubMed ID: 18607780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A reconfigurable neural signal processor (NSP) for brain machine interfaces.
    Darmanjian S; Cieslewski G; Morrison S; Dang B; Gugel K; Principe J
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2502-5. PubMed ID: 17946962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hardware and software platform for real-time processing and visualization of echographic radiofrequency signals.
    Scabia M; Biagi E; Masotti L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Oct; 49(10):1444-52. PubMed ID: 12403146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SimBSI: An open-source Simulink library for developing closed-loop brain signal interfaces in animals and humans.
    Ojeda A; Buscher N; Balasubramani P; Maric V; Ramanathan D; Mishra J
    Biomed Phys Eng Express; 2020 Apr; 6(3):035023. PubMed ID: 33438668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design and implementation of a brain-computer interface with high transfer rates.
    Cheng M; Gao X; Gao S; Xu D
    IEEE Trans Biomed Eng; 2002 Oct; 49(10):1181-6. PubMed ID: 12374343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain-computer interface technology: a review of the Second International Meeting.
    Vaughan TM; Heetderks WJ; Trejo LJ; Rymer WZ; Weinrich M; Moore MM; Kübler A; Dobkin BH; Birbaumer N; Donchin E; Wolpaw EW; Wolpaw JR
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):94-109. PubMed ID: 12899247
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BCILAB: a platform for brain-computer interface development.
    Kothe CA; Makeig S
    J Neural Eng; 2013 Oct; 10(5):056014. PubMed ID: 23985960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG.
    Kaiser V; Bauernfeind G; Kreilinger A; Kaufmann T; Kübler A; Neuper C; Müller-Putz GR
    Neuroimage; 2014 Jan; 85 Pt 1():432-44. PubMed ID: 23651839
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generic vs custom; analogue vs digital: on the implementation of an online EEG signal processing algorithm.
    Casson AJ; Rodriguez-Villegas E
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5876-80. PubMed ID: 19164054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Introduction to Laplacian montages.
    Gordon R; Rzempoluck EJ
    Am J Electroneurodiagnostic Technol; 2004 Jun; 44(2):98-102. PubMed ID: 15328706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved recognition of error related potentials through the use of brain connectivity features.
    Zhang H; Chavarriaga R; Goel MK; Gheorghe L; Millán Jdel R
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6740-3. PubMed ID: 23367476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using NIRS as a predictor for EEG-based BCI performance.
    Fazli S; Mehnert J; Steinbrink J; Blankertz B
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4911-4. PubMed ID: 23367029
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Estimation of optimal location of EEG reference electrode for motor imagery based BCI using fMRI.
    Choi SH; Lee M; Wang Y; Hong B
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1193-6. PubMed ID: 17946448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.