These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 19163802)

  • 1. Hydrogel-based microfluidic systems for co-culture of cells.
    Chen MC; Gupta M; Cheung KC
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4848-51. PubMed ID: 19163802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts.
    Kobayashi A; Yamakoshi K; Yajima Y; Utoh R; Yamada M; Seki M
    J Biosci Bioeng; 2013 Dec; 116(6):761-7. PubMed ID: 23845912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering microscale cellular niches for three-dimensional multicellular co-cultures.
    Huang CP; Lu J; Seon H; Lee AP; Flanagan LA; Kim HY; Putnam AJ; Jeon NL
    Lab Chip; 2009 Jun; 9(12):1740-8. PubMed ID: 19495458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput assembly of spatially controlled 3D cell clusters on a micro/nanoplatform.
    Gallego-Perez D; Higuita-Castro N; Sharma S; Reen RK; Palmer AF; Gooch KJ; Lee LJ; Lannutti JJ; Hansford DJ
    Lab Chip; 2010 Mar; 10(6):775-82. PubMed ID: 20221567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration.
    Lee JM; Seo HI; Bae JH; Chung BG
    Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic array with cellular valving for single cell co-culture.
    Frimat JP; Becker M; Chiang YY; Marggraf U; Janasek D; Hengstler JG; Franzke J; West J
    Lab Chip; 2011 Jan; 11(2):231-7. PubMed ID: 20978708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays.
    Khademhosseini A; Yeh J; Eng G; Karp J; Kaji H; Borenstein J; Farokhzad OC; Langer R
    Lab Chip; 2005 Dec; 5(12):1380-6. PubMed ID: 16286969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device.
    Liu T; Lin B; Qin J
    Lab Chip; 2010 Jul; 10(13):1671-7. PubMed ID: 20414488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation.
    Braschler T; Johann R; Heule M; Metref L; Renaud P
    Lab Chip; 2005 May; 5(5):553-9. PubMed ID: 15856094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures.
    Cui J; Wang H; Zheng Z; Shi Q; Sun T; Huang Q; Fukuda T
    Biofabrication; 2018 Dec; 11(1):015016. PubMed ID: 30523847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic lung airway-on-a-chip with arrayable suspended gels for studying epithelial and smooth muscle cell interactions.
    Humayun M; Chow CW; Young EWK
    Lab Chip; 2018 May; 18(9):1298-1309. PubMed ID: 29651473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption.
    Kim SH; Lee JW; Choi I; Kim YC; Lee JB; Sung JH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7220-8. PubMed ID: 24245233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of mass transport in a microchannel bioreactor with cell micropatterning.
    Zeng Y; Lee TS; Yu P; Low HT
    J Biomech Eng; 2008 Jun; 130(3):031018. PubMed ID: 18532867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammary fibroblasts remodel fibrillar collagen microstructure in a biomimetic nanocomposite hydrogel.
    Liu C; Chiang B; Lewin Mejia D; Luker KE; Luker GD; Lee A
    Acta Biomater; 2019 Jan; 83():221-232. PubMed ID: 30414485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-in-Micro Self-Reporting Hydrogel Constructs.
    Tirella A; La Marca M; Brace LA; Mattei G; Aylott JW; Ahluwalia A
    J Biomed Nanotechnol; 2015 Aug; 11(8):1451-60. PubMed ID: 26295145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically clear alginate hydrogels for spatially controlled cell entrapment and culture at microfluidic electrode surfaces.
    Betz JF; Cheng Y; Tsao CY; Zargar A; Wu HC; Luo X; Payne GF; Bentley WE; Rubloff GW
    Lab Chip; 2013 May; 13(10):1854-8. PubMed ID: 23559159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale.
    Prokop A; Prokop Z; Schaffer D; Kozlov E; Wikswo J; Cliffel D; Baudenbacher F
    Biomed Microdevices; 2004 Dec; 6(4):325-39. PubMed ID: 15548879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.