These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19163815)

  • 21. Gait analysis using a shoe-integrated wireless sensor system.
    Bamberg SJ; Benbasat AY; Scarborough DM; Krebs DE; Paradiso JA
    IEEE Trans Inf Technol Biomed; 2008 Jul; 12(4):413-23. PubMed ID: 18632321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an in-shoe pressure-sensitive device for gait analysis.
    De Rossi SM; Lenzi T; Vitiello N; Donati M; Persichetti A; Giovacchini F; Vecchi F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5637-40. PubMed ID: 22255618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards automatic detection of falls using wireless sensors.
    Srinivasan S; Han J; Lal D; Gacic A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1379-82. PubMed ID: 18002221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifocal spectacles increase variability in toe clearance and risk of tripping in the elderly.
    Johnson L; Buckley JG; Scally AJ; Elliott DB
    Invest Ophthalmol Vis Sci; 2007 Apr; 48(4):1466-71. PubMed ID: 17389472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multisensor approach to walking distance estimation with foot inertial sensing.
    Alvarez JC; González RC; Alvarez D; López AM; Rodríguez-Uría J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5720-3. PubMed ID: 18003311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fall detection using multiple cameras.
    Auvinet E; Reveret L; St-Arnaud A; Rousseau J; Meunier J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2554-7. PubMed ID: 19163224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A wearable system for pre-impact fall detection.
    Nyan MN; Tay FE; Murugasu E
    J Biomech; 2008 Dec; 41(16):3475-81. PubMed ID: 18996529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of foot clearance parameters as a precursor to forecasting the risk of tripping and falling.
    Lai DT; Taylor SB; Begg RK
    Hum Mov Sci; 2012 Apr; 31(2):271-83. PubMed ID: 21035220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inertial sensor based and shoe size independent gait analysis including heel and toe clearance estimation.
    Kanzler CM; Barth J; Rampp A; Schlarb H; Rott F; Klucken J; Eskofier BM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5424-7. PubMed ID: 26737518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tone Entropy Analysis of Augmented Information Effects on Toe-Ground Clearance When Walking.
    Khandoker AH; Sparrow WA; Begg RK
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1218-1224. PubMed ID: 27071178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S
    J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human balance estimation using a wireless 3D acceleration sensor network.
    Similä H; Kaartinen J; Lindholm M; Saarinen A; Mahjneh I
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1493-6. PubMed ID: 17945647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low-power wireless medical sensor platform.
    Dolgov AB; Zane R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2067-70. PubMed ID: 17945693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlling swing foot center of mass and toe trajectory to minimize tripping risk.
    Nagano H; Begg R; Sparrow WA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4854-7. PubMed ID: 21096905
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using Deep Learning to Predict Minimum Foot-Ground Clearance Event from Toe-Off Kinematics.
    Asogwa CO; Nagano H; Wang K; Begg R
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wavelet-based multiscale analysis of minimum toe clearance variability in the young and elderly during walking.
    Khandoker AH; Karmakar CK; Begg RK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1558-61. PubMed ID: 18002267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alternative measures of toe trajectory more accurately predict the probability of tripping than minimum toe clearance.
    Byju AG; Nussbaum MA; Madigan ML
    J Biomech; 2016 Dec; 49(16):4016-4021. PubMed ID: 27825600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of Foot Trajectory for Human Gait Phase Detection Using Wireless Ultrasonic Sensor Network.
    Qi Y; Soh CB; Gunawan E; Low KS; Thomas R
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):88-97. PubMed ID: 25769165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fall detection algorithm for the elderly using acceleration sensors on the shoes.
    Sim SY; Jeon HS; Chung GS; Kim SK; Kwon SJ; Lee WK; Park KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4935-8. PubMed ID: 22255445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Joint movements associated with minimum toe clearance variability in older adults during level overground walking.
    Carter SC; Batavia MZ; Gutierrez GM; Capezuti EA
    Gait Posture; 2020 Jan; 75():14-21. PubMed ID: 31586752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.