These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19163815)

  • 41. Detection of tripping gait patterns in the elderly using autoregressive features and support vector machines.
    Lai DT; Begg RK; Taylor S; Palaniswami M
    J Biomech; 2008; 41(8):1762-72. PubMed ID: 18433757
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Investigating scale invariant dynamics in minimum toe clearance variability of the young and elderly during treadmill walking.
    Khandoker AH; Taylor SB; Karmakar CK; Begg RK; Palaniswami M
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):380-9. PubMed ID: 18713677
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of everyday concurrent tasks on overground minimum toe clearance and gait parameters.
    Schulz BW; Lloyd JD; Lee WE
    Gait Posture; 2010 May; 32(1):18-22. PubMed ID: 20363138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot.
    Kitagawa N; Ogihara N
    Gait Posture; 2016 Mar; 45():110-4. PubMed ID: 26979891
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human body parts tracking and kinematic features assessment based on RSSI and inertial sensor measurements.
    Blumrosen G; Luttwak A
    Sensors (Basel); 2013 Aug; 13(9):11289-313. PubMed ID: 23979481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gait analysis using floor markers and inertial sensors.
    Do TN; Suh YS
    Sensors (Basel); 2012; 12(2):1594-611. PubMed ID: 22438727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor.
    Tolkiehn M; Atallah L; Lo B; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():369-72. PubMed ID: 22254325
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Drift removal for improving the accuracy of gait parameters using wearable sensor systems.
    Takeda R; Lisco G; Fujisawa T; Gastaldi L; Tohyama H; Tadano S
    Sensors (Basel); 2014 Dec; 14(12):23230-47. PubMed ID: 25490587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Toe clearance variability during walking in young and elderly men.
    Mills PM; Barrett RS; Morrison S
    Gait Posture; 2008 Jul; 28(1):101-7. PubMed ID: 18093833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ZigBee-based wireless multi-sensor system for physical activity assessment.
    Mo L; Liu S; Gao RX; John D; Staudenmayer J; Freedson P
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():846-9. PubMed ID: 22254443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A six degree of freedom head acceleration measurement device for use in football.
    Rowson S; Beckwith JG; Chu JJ; Leonard DS; Greenwald RM; Duma SM
    J Appl Biomech; 2011 Feb; 27(1):8-14. PubMed ID: 21451177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Walking speed estimation using a shank-mounted inertial measurement unit.
    Li Q; Young M; Naing V; Donelan JM
    J Biomech; 2010 May; 43(8):1640-3. PubMed ID: 20185136
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A clinical trial of a prototype of wireless surface fes rehabilitation system in foot drop correction.
    Miura N; Watanabe T; Akasaka K; Suzuki T
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5461-4. PubMed ID: 22255573
    [TBL] [Abstract][Full Text] [Related]  

  • 54. UWB-WBAN sensor node design.
    Keong HC; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2176-9. PubMed ID: 22254770
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Data acquisition system using six degree-of-freedom inertia sensor and ZigBee wireless link for fall detection and prevention.
    Dinh A; Teng D; Chen L; Ko SB; Shi Y; Basran J; Del Bello-Hass V
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2353-6. PubMed ID: 19163174
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exquisite textiles sensors and wireless sensor network device for home health care.
    Huang WT; Chen CH; Chang YJ; Chen YY; Huang JL; Yang CM; Yang TL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():546-9. PubMed ID: 19162714
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel dynamic sensing of wearable digital textile sensor with body motion analysis.
    Yang CM; Lin ZS; Hu CL; Chen YS; Ke LY; Chen YR
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4898-901. PubMed ID: 21096657
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A method for calculating the probability of tripping while walking.
    Best R; Begg R
    J Biomech; 2008; 41(5):1147-51. PubMed ID: 18255076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of multiple wearable inertial sensors in upper limb motion tracking.
    Zhou H; Stone T; Hu H; Harris N
    Med Eng Phys; 2008 Jan; 30(1):123-33. PubMed ID: 17251049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wireless prototype based on pressure and bending sensors for measuring gait [corrected] quality.
    Grenez F; Viqueira Villarejo M; García Zapirain B; Méndez Zorrilla A
    Sensors (Basel); 2013 Jul; 13(8):9679-703. PubMed ID: 23899935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.