These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19163840)

  • 1. Estimating vigilance in driving simulation using probabilistic PCA.
    Li M; Fu JW; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5000-3. PubMed ID: 19163840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Batch processing of 10,000 h of truck driver EEG data.
    Miller JC
    Biol Psychol; 1995 May; 40(1-2):209-22. PubMed ID: 7647182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Wakefulness and Brain Arousal Regulation in Psychiatric Research.
    Sander C; Hensch T; Wittekind DA; Böttger D; Hegerl U
    Neuropsychobiology; 2015; 72(3-4):195-205. PubMed ID: 26901462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A robust principal component analysis algorithm for EEG-based vigilance estimation.
    Shi LC; Duan RN; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6623-6. PubMed ID: 24111261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement.
    Olbrich S; Mulert C; Karch S; Trenner M; Leicht G; Pogarell O; Hegerl U
    Neuroimage; 2009 Apr; 45(2):319-32. PubMed ID: 19110062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evoked potentials and behavioral performance during different states of brain arousal.
    Huang J; Hensch T; Ulke C; Sander C; Spada J; Jawinski P; Hegerl U
    BMC Neurosci; 2017 Jan; 18(1):21. PubMed ID: 28122495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG bands during wakefulness, slow-wave and paradoxical sleep as a result of principal component analysis in man.
    Corsi-Cabrera M; Guevara MA; Del Río-Portilla Y; Arce C; Villanueva-Hernández Y
    Sleep; 2000 Sep; 23(6):738-44. PubMed ID: 11007440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal correlation between two channels EEG of bipolar lead in the head midline is associated with sleep-wake stages.
    Li Y; Tang X; Xu Z; Liu W; Li J
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):147-55. PubMed ID: 26934877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arousing feedback rectifies lapse in performance and corresponding EEG power spectrum.
    Jung TP; Huang KC; Chuang CH; Chen JA; Ko LW; Chiu TW; Lin CT
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1792-5. PubMed ID: 21095934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic clustering for vigilance analysis based on EEG.
    Shi LC; Lu BL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():54-7. PubMed ID: 19162592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tonic and phasic EEG and behavioral changes induced by arousing feedback.
    Lin CT; Huang KC; Chao CF; Chen JA; Chiu TW; Ko LW; Jung TP
    Neuroimage; 2010 Aug; 52(2):633-42. PubMed ID: 20438854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vigilance, alertness, or sustained attention: physiological basis and measurement.
    Oken BS; Salinsky MC; Elsas SM
    Clin Neurophysiol; 2006 Sep; 117(9):1885-901. PubMed ID: 16581292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of brain arousal and time-on-task on autonomic nervous system activity in the wake-sleep transition.
    Huang J; Ulke C; Sander C; Jawinski P; Spada J; Hegerl U; Hensch T
    BMC Neurosci; 2018 Apr; 19(1):18. PubMed ID: 29642849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Principal component analysis of electroencephalographic activity during sleep and wakefulness in the spider monkey (Ateles geoffroyi).
    Cruz-Aguilar MA; Hernández-Arteaga E; Hernández-González M; Ramírez-Salado I; Guevara MA
    Am J Primatol; 2020 Aug; 82(8):e23162. PubMed ID: 32557719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human fronto-parietal response scattering subserves vigilance at night.
    Gaggioni G; Ly JQM; Chellappa SL; Coppieters 't Wallant D; Rosanova M; Sarasso S; Luxen A; Salmon E; Middleton B; Massimini M; Schmidt C; Casali A; Phillips C; Vandewalle G
    Neuroimage; 2018 Jul; 175():354-364. PubMed ID: 29604455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG-vigilance regulation in Borderline Personality Disorder.
    Kramer L; Sander C; Bertsch K; Gescher DM; Cackowski S; Hegerl U; Herpertz SC
    Int J Psychophysiol; 2019 May; 139():10-17. PubMed ID: 30796933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG bands during wakefulness, slow-wave, and paradoxical sleep as a result of principal component analysis in the rat.
    Corsi-Cabrera M; Pérez-Garci E; Del Rio-Portilla Y; Ugalde E; Guevara MA
    Sleep; 2001 Jun; 24(4):374-80. PubMed ID: 11403521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroencephalogram bands modulated by vigilance states in an anuran species: a factor analytic approach.
    Fang G; Chen Q; Cui J; Tang Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Feb; 198(2):119-27. PubMed ID: 22045113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of infraslow fluctuations in autonomic and central vigilance markers: skin temperature, EEG β power and ERP P300 latency.
    Ramautar JR; Romeijn N; Gómez-Herrero G; Piantoni G; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):158-64. PubMed ID: 23313606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research on EEG features of attended & unattended vigilance.
    Chang Sun ; Runge Chen ; Miao Tian ; Xingwei An ; Hongzhi Qi ; Minpeng Xu ; Xuemin Wang ; Dong Ming ; Peng Zhou
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4662-4665. PubMed ID: 28325011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.