These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 19163842)

  • 1. A novel method for characterization of peripheral nerve fiber size distributions by group delay measurements and simulated annealing optimization.
    Szlavik RB; Turner GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5008-14. PubMed ID: 19163842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for characterization of peripheral nerve fiber size distributions by group delay.
    Szlavik RB
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2836-40. PubMed ID: 19126466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modification to the group delay and simulated annealing technique for characterization of peripheral nerve fiber size distributions for non-deterministic sampled data.
    Szlavik RB
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5002-5. PubMed ID: 19965031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Perturbation Based Decomposition of Compound-Evoked Potentials for Characterization of Nerve Fiber Size Distributions.
    Szlavik RB
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):212-6. PubMed ID: 26390494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive determination of the distribution of the conduction velocity of the large-diameter fibers in peripheral nerves. Estimate based upon a single recording of the stimulus response of the nerve.
    Pollak VA; Ferbert A; Cui J; Schulze-Clewing J
    Med Prog Technol; 1992-1993; 18(4):217-25. PubMed ID: 1339944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of electrode to nerve fiber distance and nerve conduction velocity through spectral analysis of the extracellular action potentials recorded from earthworm giant fibers.
    Qiao S; Odoemene O; Yoshida K
    Med Biol Eng Comput; 2012 Aug; 50(8):867-75. PubMed ID: 22714669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the conduction velocity distribution of peripheral nerve trunks.
    Tu Y; Honda S; Tomita Y
    Front Med Biol Eng; 1999; 9(3):189-97. PubMed ID: 10612559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational models of compound nerve action potentials: Efficient filter-based methods to quantify effects of tissue conductivities, conduction distance, and nerve fiber parameters.
    Peña E; Pelot NA; Grill WM
    PLoS Comput Biol; 2024 Mar; 20(3):e1011833. PubMed ID: 38427699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nerve fiber conduction-velocity distributions. II. Estimation based on two compound action potentials.
    Cummins KL; Dorfman LJ; Perkel DH
    Electroencephalogr Clin Neurophysiol; 1979 Jun; 46(6):647-58. PubMed ID: 87309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of Nerve Fiber Diameter Distribution From Compound Action Potential: A Continuous Approach.
    Un MK; Kaghazchi H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):77-83. PubMed ID: 29324405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to improve the estimation of conduction velocity distributions over a short segment of nerve.
    Wells MD; Gozani SN
    IEEE Trans Biomed Eng; 1999 Sep; 46(9):1107-20. PubMed ID: 10493074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Test for analysing nerve conduction velocity].
    Nakanishi T
    Rinsho Shinkeigaku; 1991 Dec; 31(12):1326-9. PubMed ID: 1817800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve fiber conduction-velocity distributions. I. Estimation based on the single-fiber and compound action potentials.
    Cummins KL; Perkel DH; Dorfman LJ
    Electroencephalogr Clin Neurophysiol; 1979 Jun; 46(6):634-46. PubMed ID: 87308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model for compound action potentials and currents in a nerve bundle. I: The forward calculation.
    Wijesinghe RS; Gielen FL; Wikswo JP
    Ann Biomed Eng; 1991; 19(1):43-72. PubMed ID: 2035910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conduction velocity distributions compared to fiber size distributions in normal human sural nerve.
    van Veen BK; Schellens RL; Stegeman DF; Schoonhoven R; Gabreëls-Festen AA
    Muscle Nerve; 1995 Oct; 18(10):1121-7. PubMed ID: 7659106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of nerve conduction velocity distribution from sampled compound action potential signals.
    Gu D; Gander RE; Crichlow EC
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):829-38. PubMed ID: 9216155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The single nerve fiber action potential and the filter bank--a modeling approach.
    Struijk LN; Akay M; Struijk JJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):372-5. PubMed ID: 18232387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential activation and block of peripheral nerve fibers by magnetic fields.
    Olree KS; Horch KW
    Muscle Nerve; 2006 Aug; 34(2):189-96. PubMed ID: 16691601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the conduction velocity distribution of human sensory nerve fibers.
    Morita G; Tu YX; Okajima Y; Honda S; Tomita Y
    J Electromyogr Kinesiol; 2002 Feb; 12(1):37-43. PubMed ID: 11804810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of interelectrode distance on bipolar recording of sensory nerve action potential. A mathematical study.
    Olivan Palacios J; Abad Alegria F; Sierra Posso S
    Electromyogr Clin Neurophysiol; 1993 Mar; 33(2):73-8. PubMed ID: 8449171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.