BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19163850)

  • 21. Determination of muscle fatigue using dynamically embedded signals.
    Slack PS; Ma XH
    Proc Inst Mech Eng H; 2008 Jan; 222(1):41-50. PubMed ID: 18335717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cross-comparison of time- and frequency-domain methods for monitoring the myoelectric signal during a cyclic, force-varying, fatiguing hand-grip task.
    Clancy EA; Farina D; Merletti R
    J Electromyogr Kinesiol; 2005 Jun; 15(3):256-65. PubMed ID: 15763672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.
    Karthick PA; Ghosh DM; Ramakrishnan S
    Comput Methods Programs Biomed; 2018 Feb; 154():45-56. PubMed ID: 29249346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency.
    Georgakis A; Stergioulas LK; Giakas G
    IEEE Trans Biomed Eng; 2003 Feb; 50(2):262-5. PubMed ID: 12665043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. sEMG wavelet-based indices predicts muscle power loss during dynamic contractions.
    González-Izal M; Rodríguez-Carreño I; Malanda A; Mallor-Giménez F; Navarro-Amézqueta I; Gorostiaga EM; Izquierdo M
    J Electromyogr Kinesiol; 2010 Dec; 20(6):1097-106. PubMed ID: 20579906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An estimation of the influence of force decrease on the mean power spectral frequency shift of the EMG during repetitive maximum dynamic knee extensions.
    Karlsson JS; Ostlund N; Larsson B; Gerdle B
    J Electromyogr Kinesiol; 2003 Oct; 13(5):461-8. PubMed ID: 12932420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor unit synchronization during fatigue: a novel quantification method.
    Grönlund C; Holtermann A; Roeleveld K; Karlsson JS
    J Electromyogr Kinesiol; 2009 Apr; 19(2):242-51. PubMed ID: 18036832
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automatic detection of muscle activity from mechanomyogram signals: a comparison of amplitude and wavelet-based methods.
    Alves N; Chau T
    Physiol Meas; 2010 Apr; 31(4):461-76. PubMed ID: 20182001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative study of wavelet denoising in myoelectric control applications.
    Sharma T; Veer K
    J Med Eng Technol; 2016; 40(3):80-6. PubMed ID: 26887581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of muscle fatigue during biking.
    Knaflitz M; Molinari F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):17-23. PubMed ID: 12797721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of grip span on maximal grip force and fatigue of flexor digitorum superficialis.
    Blackwell JR; Kornatz KW; Heath EM
    Appl Ergon; 1999 Oct; 30(5):401-5. PubMed ID: 10484275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [sEMG Time-frequency analysis techniques for evaluation of muscle fatigue and it's application in ergonomic studies].
    Wang DM; Wang J; Ge LZ
    Space Med Med Eng (Beijing); 2003 Oct; 16(5):387-90. PubMed ID: 14753244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatigue estimation using a novel multi-fractal detrended fluctuation analysis-based approach.
    Talebinejad M; Chan AD; Miri A
    J Electromyogr Kinesiol; 2010 Jun; 20(3):433-9. PubMed ID: 19589697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of muscle load and fatigue with the usage of frequency and time-frequency analysis of the EMG signal.
    Bartuzi P; Roman-Liu D
    Acta Bioeng Biomech; 2014; 16(2):31-9. PubMed ID: 25088376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Muscle fatigue monitoring using wavelet decomposition of surface EMG.
    Xiao S; Leung SC
    Biomed Sci Instrum; 1997; 34():147-52. PubMed ID: 9603029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Test-retest reliability of wavelet - and Fourier based EMG (instantaneous) median frequencies in the evaluation of back and hip muscle fatigue during isometric back extensions.
    Coorevits P; Danneels L; Cambier D; Ramon H; Druyts H; Karlsson JS; De Moor G; Vanderstraeten G
    J Electromyogr Kinesiol; 2008 Oct; 18(5):798-806. PubMed ID: 18396412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of handgrip forces using surface EMG of forearm muscles.
    Hoozemans MJ; van Dieën JH
    J Electromyogr Kinesiol; 2005 Aug; 15(4):358-66. PubMed ID: 15811606
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii.
    Beck TW; Housh TJ; Johnson GO; Weir JP; Cramer JT; Coburn JW; Malek MH
    J Electromyogr Kinesiol; 2005 Apr; 15(2):190-9. PubMed ID: 15664148
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EMG-based detection of muscle fatigue during low-level isometric contraction by recurrence quantification analysis and monopolar configuration.
    Ito K; Hotta Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4237-41. PubMed ID: 23366863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.
    Roman-Liu D; Konarska M
    J Electromyogr Kinesiol; 2009 Oct; 19(5):864-74. PubMed ID: 18590966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.