These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 19163854)
1. Classification of upper arm EMG signals during object-specific grasp. Martelloni C; Carpaneto J; Micera S Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5061-4. PubMed ID: 19163854 [TBL] [Abstract][Full Text] [Related]
2. Characterization of EMG patterns from proximal arm muscles during object- and orientation-specific grasps. Martelloni C; Carpaneto J; Micera S IEEE Trans Biomed Eng; 2009 Oct; 56(10):2529-36. PubMed ID: 19605312 [TBL] [Abstract][Full Text] [Related]
3. Relation between object properties and EMG during reaching to grasp. Fligge N; Urbanek H; van der Smagt P J Electromyogr Kinesiol; 2013 Apr; 23(2):402-10. PubMed ID: 23207412 [TBL] [Abstract][Full Text] [Related]
4. Decoding the grasping intention from electromyography during reaching motions. Batzianoulis I; Krausz NE; Simon AM; Hargrove L; Billard A J Neuroeng Rehabil; 2018 Jun; 15(1):57. PubMed ID: 29940991 [TBL] [Abstract][Full Text] [Related]
5. Application of the Teager-Kaiser Energy Operator in an autonomous burst detector to create onset and offset profiles of forearm muscles during reach-to-grasp movements. Krabben T; Prange GB; Kobus HJ; Rietman JS; Buurke JH Acta Bioeng Biomech; 2016; 18(4):135-144. PubMed ID: 28133386 [TBL] [Abstract][Full Text] [Related]
6. Identification of isometric contractions based on High Density EMG maps. Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal distribution of location and object effects in the electromyographic activity of upper extremity muscles during reach-to-grasp. Rouse AG; Schieber MH J Neurophysiol; 2016 Jun; 115(6):3238-48. PubMed ID: 27009156 [TBL] [Abstract][Full Text] [Related]
8. Classification of finger activation for use in a robotic prosthesis arm. Peleg D; Braiman E; Yom-Tov E; Inbar GF IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):290-3. PubMed ID: 12611366 [TBL] [Abstract][Full Text] [Related]
9. Discharge of primate magnocellular red nucleus neurons during reaching to grasp in different spatial locations. van Kan PL; McCurdy ML Exp Brain Res; 2002 Jan; 142(1):151-7. PubMed ID: 11797092 [TBL] [Abstract][Full Text] [Related]
11. An adaptive algorithm for the determination of the onset and offset of muscle contraction by EMG signal processing. Xu Q; Quan Y; Yang L; He J IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):65-73. PubMed ID: 23193462 [TBL] [Abstract][Full Text] [Related]
12. Spatial correlation of high density EMG signals provides features robust to electrode number and shift in pattern recognition for myocontrol. Stango A; Negro F; Farina D IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):189-98. PubMed ID: 25389242 [TBL] [Abstract][Full Text] [Related]
13. Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: preliminary study. Cipriani C; Sassu R; Controzzi M; Carrozza MC Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1620-3. PubMed ID: 22254633 [TBL] [Abstract][Full Text] [Related]
14. Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation. Vidovic MM; Hwang HJ; Amsuss S; Hahne JM; Farina D; Muller KR IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):961-970. PubMed ID: 26513794 [TBL] [Abstract][Full Text] [Related]
15. Fine detection of grasp force and posture by amputees via surface electromyography. Castellini C; Gruppioni E; Davalli A; Sandini G J Physiol Paris; 2009; 103(3-5):255-62. PubMed ID: 19665563 [TBL] [Abstract][Full Text] [Related]
16. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control. Adewuyi AA; Hargrove LJ; Kuiken TA IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):485-94. PubMed ID: 25955989 [TBL] [Abstract][Full Text] [Related]
17. Effect of single-limb inertial loading on bilateral reaching: interlimb interactions. Hatzitaki V; McKinley P Exp Brain Res; 2001 Sep; 140(1):34-45. PubMed ID: 11500796 [TBL] [Abstract][Full Text] [Related]
18. Bilinear modeling of EMG signals to extract user-independent features for multiuser myoelectric interface. Matsubara T; Morimoto J IEEE Trans Biomed Eng; 2013 Aug; 60(8):2205-13. PubMed ID: 23475334 [TBL] [Abstract][Full Text] [Related]
19. Fractal and twin SVM-based handgrip recognition for healthy subjects and trans-radial amputees using myoelectric signal. Arjunan SP; Kumar DK; Jayadeva J Biomed Tech (Berl); 2016 Feb; 61(1):87-94. PubMed ID: 26354833 [TBL] [Abstract][Full Text] [Related]
20. The evaluation of the discriminant ability of multiclass SVM in a study of hand motion recognition by using SEMG. Futamata M; Nagata K; Magatani K Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5246-9. PubMed ID: 23367112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]