These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19163859)

  • 21. Effects of random external background stimulation on network synaptic stability after tetanization: a modeling study.
    Chao ZC; Bakkum DJ; Wagenaar DA; Potter SM
    Neuroinformatics; 2005; 3(3):263-80. PubMed ID: 16077162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporal relation between neural activity and neurite pruning on a numerical model and a microchannel device with micro electrode array.
    Kondo Y; Yada Y; Haga T; Takayama Y; Isomura T; Jimbo Y; Fukayama O; Hoshino T; Mabuchi K
    Biochem Biophys Res Commun; 2017 Apr; 486(2):539-544. PubMed ID: 28322793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ghrelin accelerates synapse formation and activity development in cultured cortical networks.
    Stoyanova II; le Feber J
    BMC Neurosci; 2014 Apr; 15():49. PubMed ID: 24742241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task.
    Legenstein R; Chase SM; Schwartz AB; Maass W
    J Neurosci; 2010 Jun; 30(25):8400-10. PubMed ID: 20573887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distributed synchrony in a cell assembly of spiking neurons.
    Levy N; Horn D; Meilijson I; Ruppin E
    Neural Netw; 2001; 14(6-7):815-24. PubMed ID: 11665773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal learning in analog neural networks using spike-timing-dependent synaptic plasticity.
    Yoshioka M; Scarpetta S; Marinaro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051917. PubMed ID: 17677108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning by message passing in networks of discrete synapses.
    Braunstein A; Zecchina R
    Phys Rev Lett; 2006 Jan; 96(3):030201. PubMed ID: 16486667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional structure of cortical neuronal networks grown in vitro.
    Bettencourt LM; Stephens GJ; Ham MI; Gross GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021915. PubMed ID: 17358375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons.
    Bayati M; Valizadeh A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011925. PubMed ID: 23005470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spike-timing-dependent plasticity leads to gamma band responses in a neural network.
    Fründ I; Ohl FW; Herrmann CS
    Biol Cybern; 2009 Sep; 101(3):227-40. PubMed ID: 19789891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Balanced excitation and inhibition are required for high-capacity, noise-robust neuronal selectivity.
    Rubin R; Abbott LF; Sompolinsky H
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):E9366-E9375. PubMed ID: 29042519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of neuronal networks development from in-vitro recordings: A Granger causality based approach.
    Lamanna J; Esposti F; Signorini MG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4842-5. PubMed ID: 21097302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task.
    Bakkum DJ; Chao ZC; Potter SM
    J Neural Eng; 2008 Sep; 5(3):310-23. PubMed ID: 18714127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recognition of partially occluded and rotated images with a network of spiking neurons.
    Shin JH; Smith D; Swiercz W; Staley K; Rickard JT; Montero J; Kurgan LA; Cios KJ
    IEEE Trans Neural Netw; 2010 Nov; 21(11):1697-709. PubMed ID: 21047704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis.
    Napoli A; Xie J; Obeid I
    BMC Neurosci; 2014 Jan; 15():17. PubMed ID: 24443925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spike-timing dynamics of neuronal groups.
    Izhikevich EM; Gally JA; Edelman GM
    Cereb Cortex; 2004 Aug; 14(8):933-44. PubMed ID: 15142958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable learning in stochastic network states.
    El Boustani S; Yger P; Frégnac Y; Destexhe A
    J Neurosci; 2012 Jan; 32(1):194-214. PubMed ID: 22219282
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale evolving complex network model of functional connectivity in neuronal cultures.
    Spencer MC; Downes JH; Xydas D; Hammond MW; Becerra VM; Warwick K; Whalley BJ; Nasuto SJ
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):30-4. PubMed ID: 21997245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computational framework for cortical learning.
    Suri RE
    Biol Cybern; 2004 Jun; 90(6):400-9. PubMed ID: 15316786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.