These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19163882)

  • 1. Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets.
    Khan AM; Lee YK; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5172-5. PubMed ID: 19163882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer.
    Khan AM; Lee YK; Lee SY; Kim TS
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1166-72. PubMed ID: 20529753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent component feature-based human activity recognition via Linear Discriminant Analysis and Hidden Markov Model.
    Uddin M; Lee JJ; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5168-71. PubMed ID: 19163881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single tri-axial accelerometer-based real-time personal life log system capable of activity classification and exercise information generation.
    Lee MW; Khan AM; Kim JH; Cho YS; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1390-3. PubMed ID: 21096339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of children's activity type with accelerometer-based neural networks.
    de Vries SI; Engels M; Garre FG
    Med Sci Sports Exerc; 2011 Oct; 43(10):1994-9. PubMed ID: 21448085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using accelerometers for physical actions recognition by a neural fuzzy network.
    Liu SH; Chang YJ
    Telemed J E Health; 2009 Nov; 15(9):867-76. PubMed ID: 19919193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time daily activity classification with wireless sensor networks using Hidden Markov Model.
    He J; Li H; Tan J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3192-5. PubMed ID: 18002674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency domain approach for activity classification using accelerometer.
    Chung WY; Purwar A; Sharma A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1120-3. PubMed ID: 19162860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The application of EMD in activity recognition based on a single triaxial accelerometer.
    Liao M; Guo Y; Qin Y; Wang Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1533-9. PubMed ID: 26405917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of periodic activities using the Wasserstein distance.
    Oudre L; Jakubowicz J; Bianchi P; Simon C
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1610-9. PubMed ID: 22434794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term activity recognition from wristwatch accelerometer data.
    Garcia-Ceja E; Brena RF; Carrasco-Jimenez JC; Garrido L
    Sensors (Basel); 2014 Nov; 14(12):22500-24. PubMed ID: 25436652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real time control of a CPG-based model of the human trunk in different walking conditions.
    Ceccato JC; Azevedo-Coste C; Cazalets JR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1388-91. PubMed ID: 19964520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal physical activity recognition by fusing temporal and cepstral information.
    Li M; Rozgica V; Thatte G; Lee S; Emken A; Annavaram M; Mitra U; Spruijt-Metz D; Narayanan S
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):369-80. PubMed ID: 20699202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speed estimation from a tri-axial accelerometer using neural networks.
    Song Y; Shin S; Kim S; Lee D; Lee KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3224-7. PubMed ID: 18002682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Complex Activity Representation and Recognition Using Topic Model and Classifier Level Fusion.
    Liangying Peng ; Ling Chen ; Xiaojie Wu ; Haodong Guo ; Gencai Chen
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1369-1379. PubMed ID: 28113223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement.
    Chiang SY; Kan YC; Chen YS; Tu YC; Lin HC
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27918482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity modeling using event probability sequences.
    Cuntoor NP; Yegnanarayana B; Chellappa R
    IEEE Trans Image Process; 2008 Apr; 17(4):594-607. PubMed ID: 18390367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semi-supervised Hidden Markov model-based activity monitoring system.
    Xu M; Zuo L; Iyengar S; Goldfain A; DelloStritto J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1794-7. PubMed ID: 22254676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.