These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19163927)

  • 1. Impedance control complements incomplete internal models under complex external dynamics.
    Tomi N; Gouko M; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5354-7. PubMed ID: 19163927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance control is tuned to multiple directions of movement.
    Kadiallah A; Liaw G; Burdet E; Kawato M; Franklin DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5358-61. PubMed ID: 19163928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance control and internal model use during the initial stage of adaptation to novel dynamics in humans.
    Milner TE; Franklin DW
    J Physiol; 2005 Sep; 567(Pt 2):651-64. PubMed ID: 15961421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of motor imagery on learning under complex external dynamics.
    Anwar MN; Tomi N; Ito K
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5926-9. PubMed ID: 19965059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor adaptation to a small force field superimposed on a large background force.
    Liu J; Reinkensmeyer DJ
    Exp Brain Res; 2007 Apr; 178(3):402-14. PubMed ID: 17091296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance control is selectively tuned to multiple directions of movement.
    Kadiallah A; Liaw G; Kawato M; Franklin DW; Burdet E
    J Neurophysiol; 2011 Nov; 106(5):2737-48. PubMed ID: 21849617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of mechanical impedance in human arm movements using a virtual tennis system.
    Tsuji T; Takeda Y; Tanaka Y
    Biol Cybern; 2004 Nov; 91(5):295-305. PubMed ID: 15480744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms.
    Wang J; Lei Y; Binder JR
    J Neurophysiol; 2015 Apr; 113(7):2302-8. PubMed ID: 25632082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture control.
    Stroeve S
    Biol Cybern; 1999 Nov; 81(5-6):475-94. PubMed ID: 10592022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A behavior study of the effects of visual feedback on motor output.
    Hou W; Zheng J; Jiang Y; Shen S; Sterr A; Szameitat AJ; van Loon M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1273-6. PubMed ID: 17946453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single limb performance following contralateral bimanual limb training.
    Burgess JK; Bareither R; Patton JL
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):347-55. PubMed ID: 17894267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of an internal model of environment dynamics during upper limb reaching movements: a fuzzy approach.
    MacDonald C; Moussavi Z; Sarkodie-Gyan T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4862-5. PubMed ID: 18003095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning optimal adaptation strategies in unpredictable motor tasks.
    Braun DA; Aertsen A; Wolpert DM; Mehring C
    J Neurosci; 2009 May; 29(20):6472-8. PubMed ID: 19458218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Task performance is prioritized over energy reduction.
    Balasubramanian R; Howe RD; Matsuoka Y
    IEEE Trans Biomed Eng; 2009 May; 56(5):1310-7. PubMed ID: 19272896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different mechanisms involved in adaptation to stable and unstable dynamics.
    Osu R; Burdet E; Franklin DW; Milner TE; Kawato M
    J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model.
    Franklin DW; Osu R; Burdet E; Kawato M; Milner TE
    J Neurophysiol; 2003 Nov; 90(5):3270-82. PubMed ID: 14615432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer of dynamic motor skills acquired during isometric training to free motion.
    Melendez-Calderon A; Tan M; Bittmann MF; Burdet E; Patton JL
    J Neurophysiol; 2017 Jul; 118(1):219-233. PubMed ID: 28356476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.