BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 19164010)

  • 1. Network motif-based identification of breast cancer susceptibility genes.
    Zhang Y; Xuan J; de Los Reyes BG; Clarke R; Ressom HW
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5696-9. PubMed ID: 19164010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cluster analysis of networks generated through homology: automatic identification of important protein communities involved in cancer metastasis.
    Jonsson PF; Cavanna T; Zicha D; Bates PA
    BMC Bioinformatics; 2006 Jan; 7():2. PubMed ID: 16398927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A supervised approach for identifying discriminating genotype patterns and its application to breast cancer data.
    Yosef N; Yakhini Z; Tsalenko A; Kristensen V; Børresen-Dale AL; Ruppin E; Sharan R
    Bioinformatics; 2007 Jan; 23(2):e91-8. PubMed ID: 17237111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated detection of regions of interest for tissue microarray experiments: an image texture analysis.
    Karaçali B; Tözeren A
    BMC Med Imaging; 2007 Mar; 7():2. PubMed ID: 17349041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-based classification of breast cancer metastasis.
    Chuang HY; Lee E; Liu YT; Lee D; Ideker T
    Mol Syst Biol; 2007; 3():140. PubMed ID: 17940530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical application of fuzzy association rules for identifying breast cancer biomarkers.
    Lopez FJ; Cuadros M; Cano C; Concha A; Blanco A
    Med Biol Eng Comput; 2012 Sep; 50(9):981-90. PubMed ID: 22622817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive Naive Bayesian network: A new approach of constructing gene-gene interaction network for cancer classification.
    Tian XW; Lim JS
    Biomed Mater Eng; 2015; 26 Suppl 1():S1929-36. PubMed ID: 26405966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of diagnostic subnetwork markers for cancer in human protein-protein interaction network.
    Su J; Yoon BJ; Dougherty ER
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S8. PubMed ID: 20946619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-Based Logistic Classification with an Enhanced L 1/2 Solver Reveals Biomarker and Subnetwork Signatures for Diagnosing Lung Cancer.
    Huang HH; Liang Y; Liu XY
    Biomed Res Int; 2015; 2015():713953. PubMed ID: 26185761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal search-based gene subset selection for gene array cancer classification.
    Li J; Su H; Chen H; Futscher BW
    IEEE Trans Inf Technol Biomed; 2007 Jul; 11(4):398-405. PubMed ID: 17674622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivation of a fifteen gene prognostic panel for six cancers.
    Khirade MF; Lal G; Bapat SA
    Sci Rep; 2015 Aug; 5():13248. PubMed ID: 26272668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple decision rules for classifying human cancers from gene expression profiles.
    Tan AC; Naiman DQ; Xu L; Winslow RL; Geman D
    Bioinformatics; 2005 Oct; 21(20):3896-904. PubMed ID: 16105897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a measure of classification complexity in gene expression signatures.
    Kamath V; Yeatman TJ; Eschrich SA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5704-7. PubMed ID: 19164012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated feature selection and classification method to select minimum number of variables on the case study of gene expression data.
    Goh L; Kasabov N
    J Bioinform Comput Biol; 2005 Oct; 3(5):1107-36. PubMed ID: 16278950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regularization strategies for hyperplane classifiers: application to cancer classification with gene expression data.
    Andries E; Hagstrom T; Atlas SR; Willman C
    J Bioinform Comput Biol; 2007 Feb; 5(1):79-104. PubMed ID: 17477492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple SVM-RFE for gene selection in cancer classification with expression data.
    Duan KB; Rajapakse JC; Wang H; Azuaje F
    IEEE Trans Nanobioscience; 2005 Sep; 4(3):228-34. PubMed ID: 16220686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eigengene-based linear discriminant model for tumor classification using gene expression microarray data.
    Shen R; Ghosh D; Chinnaiyan A; Meng Z
    Bioinformatics; 2006 Nov; 22(21):2635-42. PubMed ID: 16926220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of lung cancer pathways using reverse phase protein microarray and prior-knowledge based Bayesian networks.
    Kim DC; Yang CR; Wang X; Zhang B; Wu X; Gao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5543-6. PubMed ID: 22255594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers.
    Karaçali B; Vamvakidou AP; Tözeren A
    BMC Med Imaging; 2007 Sep; 7():7. PubMed ID: 17822559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis.
    Tang Y; Zhang YQ; Huang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2007; 4(3):365-81. PubMed ID: 17666757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.