These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19164066)

  • 1. An efficient computational method for simulation of the two-dimensional electrophysiological waves.
    Belhamadia Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5922-5. PubMed ID: 19164066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient technique for the numerical solution of the bidomain equations.
    Whiteley JP
    Ann Biomed Eng; 2008 Aug; 36(8):1398-408. PubMed ID: 18481180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart.
    Sundnes J; Lines GT; Mardal KA; Tveito A
    Comput Methods Biomech Biomed Engin; 2002 Dec; 5(6):397-409. PubMed ID: 12468421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements.
    Leon LJ; Horácek BM
    J Electrocardiol; 1991 Jan; 24(1):1-15. PubMed ID: 2056264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac electrophysiology numerical models using symmetric multiprocessing (SMP).
    Petsios SK; Fotiadis DI
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5897-900. PubMed ID: 19965052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deformable finite element derived finite difference method for cardiac activation problems.
    Buist M; Sands G; Hunter P; Pullan A
    Ann Biomed Eng; 2003 May; 31(5):577-88. PubMed ID: 12757201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of graph-based, eikonal, and monodomain simulations for the estimation of cardiac activation times.
    Wallman M; Smith NP; Rodriguez B
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1739-48. PubMed ID: 22491074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation dynamics in anisotropic cardiac tissue via decoupling.
    Clements JC; Nenonen J; Li PK; Horácek BM
    Ann Biomed Eng; 2004 Jul; 32(7):984-90. PubMed ID: 15298436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite volume method for modeling discontinuous electrical activation in cardiac tissue.
    Trew M; Le Grice I; Smaill B; Pullan A
    Ann Biomed Eng; 2005 May; 33(5):590-602. PubMed ID: 15981860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart.
    Potse M; Dubé B; Richer J; Vinet A; Gulrajani RM
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2425-35. PubMed ID: 17153199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function.
    Skouibine K; Krassowska W
    Ann Biomed Eng; 2000 Jul; 28(7):772-80. PubMed ID: 11016414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation.
    Gomes JM; Alvarenga A; Campos RS; Rocha BM; da Silva AP; dos Santos RW
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):600-8. PubMed ID: 25296402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational model of atrial electrical activation and propagation.
    Dokos S; Cloherty SL; Lovell NH
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():908-11. PubMed ID: 18002104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.
    Cuccuru G; Fotia G; Maggio F; Southern J
    Biomed Res Int; 2015; 2015():473279. PubMed ID: 26583112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiology driven adaptivity for the numerical solution of the bidomain equations.
    Whiteley JP
    Ann Biomed Eng; 2007 Sep; 35(9):1510-20. PubMed ID: 17541825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quadratic adaptive algorithm for solving cardiac action potential models.
    Chen MH; Chen PY; Luo CH
    Comput Biol Med; 2016 Oct; 77():261-73. PubMed ID: 27639239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.