These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 19164554)
1. Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm. Eser M; Masip L; Kadokura H; Georgiou G; Beckwith J Proc Natl Acad Sci U S A; 2009 Feb; 106(5):1572-7. PubMed ID: 19164554 [TBL] [Abstract][Full Text] [Related]
2. The reductive enzyme thioredoxin 1 acts as an oxidant when it is exported to the Escherichia coli periplasm. Debarbieux L; Beckwith J Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10751-6. PubMed ID: 9724776 [TBL] [Abstract][Full Text] [Related]
3. The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli. Knoke LR; Zimmermann J; Lupilov N; Schneider JF; Celebi B; Morgan B; Leichert LI Redox Biol; 2023 Aug; 64():102800. PubMed ID: 37413765 [TBL] [Abstract][Full Text] [Related]
4. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. Prinz WA; Aslund F; Holmgren A; Beckwith J J Biol Chem; 1997 Jun; 272(25):15661-7. PubMed ID: 9188456 [TBL] [Abstract][Full Text] [Related]
5. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm. Jonda S; Huber-Wunderlich M; Glockshuber R; Mössner E EMBO J; 1999 Jun; 18(12):3271-81. PubMed ID: 10369668 [TBL] [Abstract][Full Text] [Related]
6. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. Aslund F; Berndt KD; Holmgren A J Biol Chem; 1997 Dec; 272(49):30780-6. PubMed ID: 9388218 [TBL] [Abstract][Full Text] [Related]
7. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. Stewart EJ; Aslund F; Beckwith J EMBO J; 1998 Oct; 17(19):5543-50. PubMed ID: 9755155 [TBL] [Abstract][Full Text] [Related]
8. S-glutathiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase, and glutathione. Jung CH; Thomas JA Arch Biochem Biophys; 1996 Nov; 335(1):61-72. PubMed ID: 8914835 [TBL] [Abstract][Full Text] [Related]
9. Identification of the Thioredoxin Partner of Vitamin K Epoxide Reductase in Mycobacterial Disulfide Bond Formation. Ke N; Landeta C; Wang X; Boyd D; Eser M; Beckwith J J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784887 [TBL] [Abstract][Full Text] [Related]
10. The primary structure of Escherichia coli glutaredoxin. Distant homology with thioredoxins in a superfamily of small proteins with a redox-active cystine disulfide/cysteine dithiol. Höög JO; Jörnvall H; Holmgren A; Carlquist M; Persson M Eur J Biochem; 1983 Oct; 136(1):223-32. PubMed ID: 6352262 [TBL] [Abstract][Full Text] [Related]
11. On the functional interchangeability, oxidant versus reductant, of members of the thioredoxin superfamily. Debarbieux L; Beckwith J J Bacteriol; 2000 Feb; 182(3):723-7. PubMed ID: 10633106 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases. Mössner E; Huber-Wunderlich M; Glockshuber R Protein Sci; 1998 May; 7(5):1233-44. PubMed ID: 9605329 [TBL] [Abstract][Full Text] [Related]
13. Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways. Faulkner MJ; Veeravalli K; Gon S; Georgiou G; Beckwith J Proc Natl Acad Sci U S A; 2008 May; 105(18):6735-40. PubMed ID: 18456836 [TBL] [Abstract][Full Text] [Related]
14. Disulfide bond formation system in Escherichia coli. Inaba K J Biochem; 2009 Nov; 146(5):591-7. PubMed ID: 19567379 [TBL] [Abstract][Full Text] [Related]
15. Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. Kobayashi T; Ito K EMBO J; 1999 Mar; 18(5):1192-8. PubMed ID: 10064586 [TBL] [Abstract][Full Text] [Related]
16. Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione. Peltoniemi MJ; Karala AR; Jurvansuu JK; Kinnula VL; Ruddock LW J Biol Chem; 2006 Nov; 281(44):33107-14. PubMed ID: 16956877 [TBL] [Abstract][Full Text] [Related]
17. Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation. Alanen HI; Walker KL; Lourdes Velez Suberbie M; Matos CF; Bönisch S; Freedman RB; Keshavarz-Moore E; Ruddock LW; Robinson C Biochim Biophys Acta; 2015 Mar; 1853(3):756-63. PubMed ID: 25554517 [TBL] [Abstract][Full Text] [Related]
18. Non-reciprocal regulation of the redox state of the glutathione-glutaredoxin and thioredoxin systems. Trotter EW; Grant CM EMBO Rep; 2003 Feb; 4(2):184-8. PubMed ID: 12612609 [TBL] [Abstract][Full Text] [Related]
19. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Guilhot C; Jander G; Martin NL; Beckwith J Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9895-9. PubMed ID: 7568240 [TBL] [Abstract][Full Text] [Related]
20. Roles of thiol-redox pathways in bacteria. Ritz D; Beckwith J Annu Rev Microbiol; 2001; 55():21-48. PubMed ID: 11544348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]