BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 19164747)

  • 1. Genetic interactions between transcription factors cause natural variation in yeast.
    Gerke J; Lorenz K; Cohen B
    Science; 2009 Jan; 323(5913):498-501. PubMed ID: 19164747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative trait loci mapped to single-nucleotide resolution in yeast.
    Deutschbauer AM; Davis RW
    Nat Genet; 2005 Dec; 37(12):1333-40. PubMed ID: 16273108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription of the mating-type-regulated lncRNA IRT1 is governed by TORC1 and PKA.
    Moretto F; van Werven FJ
    Curr Genet; 2017 May; 63(2):325-329. PubMed ID: 27520925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analysis of variation in transcription factor binding in yeast.
    Zheng W; Zhao H; Mancera E; Steinmetz LM; Snyder M
    Nature; 2010 Apr; 464(7292):1187-91. PubMed ID: 20237471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic architecture of biofilm formation in a clinical isolate of Saccharomyces cerevisiae.
    Granek JA; Murray D; Kayrkçi Ö; Magwene PM
    Genetics; 2013 Feb; 193(2):587-600. PubMed ID: 23172850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative stress survival in a clinical Saccharomyces cerevisiae isolate is influenced by a major quantitative trait nucleotide.
    Diezmann S; Dietrich FS
    Genetics; 2011 Jul; 188(3):709-22. PubMed ID: 21515583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural polymorphism in BUL2 links cellular amino acid availability with chronological aging and telomere maintenance in yeast.
    Kwan EX; Foss E; Kruglyak L; Bedalov A
    PLoS Genet; 2011 Aug; 7(8):e1002250. PubMed ID: 21901113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epistasis in a quantitative trait captured by a molecular model of transcription factor interactions.
    Gertz J; Gerke JP; Cohen BA
    Theor Popul Biol; 2010 Feb; 77(1):1-5. PubMed ID: 19818800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast.
    Salinas F; de Boer CG; Abarca V; García V; Cuevas M; Araos S; Larrondo LF; Martínez C; Cubillos FA
    Sci Rep; 2016 Feb; 6():21849. PubMed ID: 26898953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An RME1-independent pathway for sporulation control in Saccharomyces cerevisiae acts through IME1 transcript accumulation.
    Kao G; Shah JC; Clancy MJ
    Genetics; 1990 Dec; 126(4):823-35. PubMed ID: 2076816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources.
    Strudwick N; Brown M; Parmar VM; Schröder M
    Mol Cell Biol; 2010 Dec; 30(23):5514-30. PubMed ID: 20876298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.
    Weidberg H; Moretto F; Spedale G; Amon A; van Werven FJ
    PLoS Genet; 2016 Jun; 12(6):e1006075. PubMed ID: 27272508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variation in Saccharomyces cerevisiae: circuit diversification in a signal transduction network.
    Chin BL; Ryan O; Lewitter F; Boone C; Fink GR
    Genetics; 2012 Dec; 192(4):1523-32. PubMed ID: 23051644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency.
    Gerke JP; Chen CT; Cohen BA
    Genetics; 2006 Oct; 174(2):985-97. PubMed ID: 16951083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four linked genes participate in controlling sporulation efficiency in budding yeast.
    Ben-Ari G; Zenvirth D; Sherman A; David L; Klutstein M; Lavi U; Hillel J; Simchen G
    PLoS Genet; 2006 Nov; 2(11):e195. PubMed ID: 17112318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cln3 blocks IME1 transcription and the Ime1-Ume6 interaction to cause the sporulation incompetence in a sake yeast, Kyokai no. 7.
    Nakazawa N; Abe K; Koshika Y; Iwano K
    J Biosci Bioeng; 2010 Jul; 110(1):1-7. PubMed ID: 20541107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies.
    Piccirillo S; White MG; Murphy JC; Law DJ; Honigberg SM
    Genetics; 2010 Mar; 184(3):707-16. PubMed ID: 20038633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of combinatorial regulation in yeast transcriptional networks: a case study of sporulation.
    Wang W; Cherry JM; Nochomovitz Y; Jolly E; Botstein D; Li H
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1998-2003. PubMed ID: 15684073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Tup1-Ssn6 general repressor is involved in repression of IME1 encoding a transcriptional activator of meiosis in Saccharomyces cerevisiae.
    Mizuno T; Nakazawa N; Remgsamrarn P; Kunoh T; Oshima Y; Harashima S
    Curr Genet; 1998 Apr; 33(4):239-47. PubMed ID: 9560430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of genomic approaches with functional genetic experiments reveals two modes of repression of yeast middle-phase meiosis genes.
    Klutstein M; Siegfried Z; Gispan A; Farkash-Amar S; Zinman G; Bar-Joseph Z; Simchen G; Simon I
    BMC Genomics; 2010 Aug; 11():478. PubMed ID: 20716365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.