These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 19165611)
1. Single amino acid sequence polymorphisms in rat cardiac troponin revealed by top-down tandem mass spectrometry. Sancho Solis R; Ge Y; Walker JW J Muscle Res Cell Motil; 2008; 29(6-8):203-12. PubMed ID: 19165611 [TBL] [Abstract][Full Text] [Related]
2. Unraveling molecular complexity of phosphorylated human cardiac troponin I by top down electron capture dissociation/electron transfer dissociation mass spectrometry. Zabrouskov V; Ge Y; Schwartz J; Walker JW Mol Cell Proteomics; 2008 Oct; 7(10):1838-49. PubMed ID: 18445579 [TBL] [Abstract][Full Text] [Related]
3. Deciphering modifications in swine cardiac troponin I by top-down high-resolution tandem mass spectrometry. Zhang J; Dong X; Hacker TA; Ge Y J Am Soc Mass Spectrom; 2010 Jun; 21(6):940-8. PubMed ID: 20223681 [TBL] [Abstract][Full Text] [Related]
4. Phosphorylation, but not alternative splicing or proteolytic degradation, is conserved in human and mouse cardiac troponin T. Zhang J; Zhang H; Ayaz-Guner S; Chen YC; Dong X; Xu Q; Ge Y Biochemistry; 2011 Jul; 50(27):6081-92. PubMed ID: 21639091 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive Characterization of Swine Cardiac Troponin T Proteoforms by Top-Down Mass Spectrometry. Lin Z; Guo F; Gregorich ZR; Sun R; Zhang H; Hu Y; Shanmuganayagam D; Ge Y J Am Soc Mass Spectrom; 2018 Jun; 29(6):1284-1294. PubMed ID: 29633223 [TBL] [Abstract][Full Text] [Related]
6. In vivo phosphorylation site mapping in mouse cardiac troponin I by high resolution top-down electron capture dissociation mass spectrometry: Ser22/23 are the only sites basally phosphorylated. Ayaz-Guner S; Zhang J; Li L; Walker JW; Ge Y Biochemistry; 2009 Sep; 48(34):8161-70. PubMed ID: 19637843 [TBL] [Abstract][Full Text] [Related]
7. Impact of cardiac troponin T N-terminal deletion and phosphorylation on myofilament function. Sumandea MP; Vahebi S; Sumandea CA; Garcia-Cazarin ML; Staidle J; Homsher E Biochemistry; 2009 Aug; 48(32):7722-31. PubMed ID: 19586048 [TBL] [Abstract][Full Text] [Related]
8. Analysis of cardiac troponin proteoforms by top-down mass spectrometry. Tiambeng TN; Tucholski T; Wu Z; Zhu Y; Mitchell SD; Roberts DS; Jin Y; Ge Y Methods Enzymol; 2019; 626():347-374. PubMed ID: 31606082 [TBL] [Abstract][Full Text] [Related]
9. Genetic and biochemical heterogeneity of cardiac troponins: clinical and laboratory implications. Lippi G; Targher G; Franchini M; Plebani M Clin Chem Lab Med; 2009; 47(10):1183-94. PubMed ID: 19754353 [TBL] [Abstract][Full Text] [Related]
10. Posttranslational modifications of cardiac troponin T: an overview. Streng AS; de Boer D; van der Velden J; van Dieijen-Visser MP; Wodzig WK J Mol Cell Cardiol; 2013 Oct; 63():47-56. PubMed ID: 23871791 [TBL] [Abstract][Full Text] [Related]
11. The influence of trout cardiac troponin I and PKA phosphorylation on the Ca2+ affinity of the cardiac troponin complex. Kirkpatrick KP; Robertson AS; Klaiman JM; Gillis TE J Exp Biol; 2011 Jun; 214(Pt 12):1981-8. PubMed ID: 21613513 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of cardiac troponin I by mammalian sterile 20-like kinase 1. You B; Yan G; Zhang Z; Yan L; Li J; Ge Q; Jin JP; Sun J Biochem J; 2009 Feb; 418(1):93-101. PubMed ID: 18986304 [TBL] [Abstract][Full Text] [Related]
13. Forced expression and assembly of rat cardiac troponin T isoforms in cultured muscle and nonmuscle cells. Warren KS; Lin JJ J Muscle Res Cell Motil; 1993 Dec; 14(6):619-32. PubMed ID: 8126222 [TBL] [Abstract][Full Text] [Related]
14. Strategy for analysis of cardiac troponins in biological samples with a combination of affinity chromatography and mass spectrometry. Labugger R; Simpson JA; Quick M; Brown HA; Collier CE; Neverova I; Van Eyk JE Clin Chem; 2003 Jun; 49(6 Pt 1):873-9. PubMed ID: 12765982 [TBL] [Abstract][Full Text] [Related]
15. Distribution and prognostic value of high-sensitivity cardiac troponin T and I across glycemic status: a population-based study. Zhang J; Li X; Zhang S; Wang Z; Tian R; Xu F; Chen Y; Li C Cardiovasc Diabetol; 2024 Feb; 23(1):83. PubMed ID: 38402162 [TBL] [Abstract][Full Text] [Related]
17. Effects of HCM cTnI mutation R145G on troponin structure and modulation by PKA phosphorylation elucidated by molecular dynamics simulations. Lindert S; Cheng Y; Kekenes-Huskey P; Regnier M; McCammon JA Biophys J; 2015 Jan; 108(2):395-407. PubMed ID: 25606687 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the cardiac holotroponin complex reconstituted from native cardiac troponin T and recombinant I and C. Reiffert S; Maytum R; Geeves M; Lohmann K; Greis T; Blüggel M; Meyer HE; Heilmeyer LM; Jaquet K Eur J Biochem; 1999 Apr; 261(1):40-7. PubMed ID: 10103031 [TBL] [Abstract][Full Text] [Related]
19. Mutual rescues between two dominant negative mutations in cardiac troponin I and cardiac troponin T. Wei B; Gao J; Huang XP; Jin JP J Biol Chem; 2010 Sep; 285(36):27806-16. PubMed ID: 20551314 [TBL] [Abstract][Full Text] [Related]
20. Cardiac troponin I is present in plasma of type 1 myocardial infarction patients and patients with troponin I elevations due to other etiologies as complex with little free I. van Wijk XMR; Claassen S; Enea NS; Li P; Yang S; Brouwer MA; Cramer GE; Zuk R; Lynch KL; Wu AHB Clin Biochem; 2019 Nov; 73():35-43. PubMed ID: 31247187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]