These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19166206)

  • 1. [The hydrophilicity and cell affinity of polylactic acid containg bionic function group of phosphorylcholine].
    Luo J; Wang L; Chen Y; Luo X; Chen N; Wan C; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec; 25(6):1344-8. PubMed ID: 19166206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavior of endothelial cells regulated by a dynamically changed microenvironment of biodegradable PLLA-PC.
    Chen Y; Chen N; Qiu Z; Wang L; Wan C; Luo X; Li S
    Macromol Biosci; 2009 May; 9(5):413-20. PubMed ID: 19116893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced adhesion of blood cells to biodegradable polymers by introducing phosphorylcholine moieties.
    Iwasaki Y; Tojo Y; Kurosaki T; Nakabayashi N
    J Biomed Mater Res A; 2003 May; 65(2):164-9. PubMed ID: 12734808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue response to poly(L-lactic acid)-based blend with phospholipid polymer for biodegradable cardiovascular stents.
    Kim HI; Ishihara K; Lee S; Seo JH; Kim HY; Suh D; Kim MU; Konno T; Takai M; Seo JS
    Biomaterials; 2011 Mar; 32(9):2241-7. PubMed ID: 21185597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioabsorbable material-containing phosphorylcholine group-rich surfaces for temporary scaffolding of the vessel wall.
    Kim HI; Takai M; Ishihara K
    Tissue Eng Part C Methods; 2009 Jun; 15(2):125-33. PubMed ID: 19505178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers.
    Watanabe J; Eriguchi T; Ishihara K
    Biomacromolecules; 2002; 3(6):1375-83. PubMed ID: 12425679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production.
    Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK
    Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of reversible shell cross-linked micelles from the biodegradable amphiphilic diblock copolymer poly(L-cysteine)-block-poly(L-lactide).
    Sun J; Chen X; Lu T; Liu S; Tian H; Guo Z; Jing X
    Langmuir; 2008 Sep; 24(18):10099-106. PubMed ID: 18698858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair.
    Chen X; Li Y; Gu N
    Biomed Mater; 2010 Aug; 5(4):044104. PubMed ID: 20683132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined strategy to reduce restenosis for vascular tissue engineering applications.
    Patel HJ; Su SH; Patterson C; Nguyen KT
    Biotechnol Prog; 2006; 22(1):38-44. PubMed ID: 16454490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A poly(L-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses.
    François S; Chakfé N; Durand B; Laroche G
    Acta Biomater; 2009 Sep; 5(7):2418-28. PubMed ID: 19345622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterofunctional nanosheet controlling cell adhesion properties by collagen coating.
    Niwa D; Fujie T; Lang T; Goda N; Takeoka S
    J Biomater Appl; 2012 Aug; 27(2):131-41. PubMed ID: 21343215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of the pro-inflammatory response by tetrandrine-loading poly(L-lactic acid) films in vitro and in vivo.
    Wang QS; Cui YL; Gao LN; Guo Y; Li RX; Zhang XZ
    J Biomed Mater Res A; 2014 Nov; 102(11):4098-107. PubMed ID: 24442958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolytic degradation of electron beam irradiated high molecular weight and non-irradiated moderate molecular weight PLLA.
    Loo SC; Tan HT; Ooi CP; Boey YC
    Acta Biomater; 2006 May; 2(3):287-96. PubMed ID: 16701888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of piezoelectric poly-L-lactic acid films in promoting ossification in vivo.
    Shimono T; Matsunaga S; Fukada E; Hattori T; Shikinami Y
    In Vivo; 1996; 10(5):471-6. PubMed ID: 8899424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards developing surface eroding poly(alpha-hydroxy acids).
    Xu XJ; Sy JC; Prasad Shastri V
    Biomaterials; 2006 May; 27(15):3021-30. PubMed ID: 16455136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(L-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior.
    Liu Q; Cai C; Dong CM
    J Biomed Mater Res A; 2009 Mar; 88(4):990-9. PubMed ID: 18384173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds.
    Woo KM; Seo J; Zhang R; Ma PX
    Biomaterials; 2007 Jun; 28(16):2622-30. PubMed ID: 17320948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalently attached, silver-doped poly(vinyl alcohol) hydrogel films on poly(l-lactic acid).
    Zan X; Kozlov M; McCarthy TJ; Su Z
    Biomacromolecules; 2010 Apr; 11(4):1082-8. PubMed ID: 20307097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of substrata effect on cell adhesion properties using freestanding poly(L-lactic acid) nanosheets.
    Fujie T; Ricotti L; Desii A; Menciassi A; Dario P; Mattoli V
    Langmuir; 2011 Nov; 27(21):13173-82. PubMed ID: 21913651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.