These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 19166274)
81. Redox-active porous metal-organic framework producing silver nanoparticles from AgI ions at room temperature. Moon HR; Kim JH; Suh MP Angew Chem Int Ed Engl; 2005 Feb; 44(8):1261-5. PubMed ID: 15645526 [No Abstract] [Full Text] [Related]
82. In situ TEM nanoindentation of nanoparticles. Carlton CE; Ferreira PJ Micron; 2012 Nov; 43(11):1134-9. PubMed ID: 22484052 [TBL] [Abstract][Full Text] [Related]
83. A snapshot of a coordination polymer self-assembly process: the crystallization of a metastable 3D network followed by the spontaneous transformation in water to a 2D pseudopolymorphic phase. Bataille T; Costantino F; Ienco A; Guerri A; Marmottini F; Midollini S Chem Commun (Camb); 2008 Dec; (47):6381-3. PubMed ID: 19048162 [TBL] [Abstract][Full Text] [Related]
84. Acid-Base-Triggered Structural Transformation of a Polyoxometalate Core Inside a Dodecahedrane-like Silver Thiolate Shell. Liu H; Song CY; Huang RW; Zhang Y; Xu H; Li MJ; Zang SQ; Gao GG Angew Chem Int Ed Engl; 2016 Mar; 55(11):3699-703. PubMed ID: 26879840 [TBL] [Abstract][Full Text] [Related]
85. Size dependent allotropic transition of Co fine particles. Ma G; Zhao X; Veintemillas-Verdaguer S J Nanosci Nanotechnol; 2009 Jul; 9(7):4472-7. PubMed ID: 19916476 [TBL] [Abstract][Full Text] [Related]
86. Using sound to study bubble coalescence. Kracht W; Finch JA J Colloid Interface Sci; 2009 Apr; 332(1):237-45. PubMed ID: 19128806 [TBL] [Abstract][Full Text] [Related]
87. Coalescence and Collisions of Gold Nanoparticles. Antúnez-García J; Mejía-Rosales S; Pérez-Tijerina E; Montejano-Carrizales JM; José-Yacamán M Materials (Basel); 2011 Jan; 4(2):368-379. PubMed ID: 28879995 [TBL] [Abstract][Full Text] [Related]
88. Direct synthesis and structural characterisation of tri- and tetra-nuclear silver metallaknotanes by self-assembly approach. Bourlier J; Jouaiti A; Kyritsakas-Gruber N; Allouche L; Planeix JM; Hosseini MW Chem Commun (Camb); 2008 Dec; (46):6191-3. PubMed ID: 19082116 [TBL] [Abstract][Full Text] [Related]
89. A novel method for Zhang L; He LB; Shi L; Yang YF; Shang GL; Hong H; Sun LT RSC Adv; 2020 Mar; 10(22):13037-13042. PubMed ID: 35492094 [TBL] [Abstract][Full Text] [Related]
90. Direct observation of macropore self-formation in hierarchically structured metal oxides. Dapsens PY; Hakim SH; Su BL; Shanks BH Chem Commun (Camb); 2010 Dec; 46(47):8980-2. PubMed ID: 20967374 [TBL] [Abstract][Full Text] [Related]
92. Dendrite fragmentation: an experiment-driven simulation. Cool T; Voorhees PW Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311211 [TBL] [Abstract][Full Text] [Related]
93. Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. Yang J; Qi L; Lu C; Ma J; Cheng H Angew Chem Int Ed Engl; 2005 Jan; 44(4):598-603. PubMed ID: 15602755 [No Abstract] [Full Text] [Related]
94. Binary superlattices of nanoparticles: self-assembly leads to "metamaterials". Rogach AL Angew Chem Int Ed Engl; 2004 Jan; 43(2):148-9. PubMed ID: 14695601 [No Abstract] [Full Text] [Related]
95. A chiral pinwheel supramolecular network driven by the assembly of PTCDI and melamine. Silly F; Shaw AQ; Castell MR; Briggs GA Chem Commun (Camb); 2008 Apr; (16):1907-9. PubMed ID: 18401514 [TBL] [Abstract][Full Text] [Related]
96. Directing self-assembly of nanoparticles at water/oil interfaces. Duan H; Wang D; Kurth DG; Möhwald H Angew Chem Int Ed Engl; 2004 Oct; 43(42):5639-42. PubMed ID: 15495204 [No Abstract] [Full Text] [Related]
97. Vacancy coalescence during oxidation of iron nanoparticles. Cabot A; Puntes VF; Shevchenko E; Yin Y; Balcells L; Marcus MA; Hughes SM; Alivisatos AP J Am Chem Soc; 2007 Aug; 129(34):10358-60. PubMed ID: 17676738 [No Abstract] [Full Text] [Related]