BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 19166278)

  • 1. Structural evolution of the dihydrate to anhydrate crystalline transition of trehalose as measured by wide-angle X-ray scattering.
    Kilburn D; Sokol PE
    J Phys Chem B; 2009 Feb; 113(7):2201-6. PubMed ID: 19166278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of an anhydrous form of trehalose: structure of water channels of trehalose polymorphism.
    Nagase H; Ogawa N; Endo T; Shiro M; Ueda H; Sakurai M
    J Phys Chem B; 2008 Jul; 112(30):9105-11. PubMed ID: 18605683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative crystal transformation of dihydrate trehalose to anhydrous trehalose using ethanol.
    Ohashi T; Yoshii H; Furuta T
    Carbohydr Res; 2007 May; 342(6):819-25. PubMed ID: 17286968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate).
    Gan Z; Kuwabara K; Abe H; Iwata T; Doi Y
    Biomacromolecules; 2004; 5(2):371-8. PubMed ID: 15002996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RH-Temperature Stability Diagram of the Dihydrate, β-Anhydrate, and α-Anhydrate Forms of Crystalline Trehalose.
    Allan M; Chamberlain MC; Mauer LJ
    J Food Sci; 2019 Jun; 84(6):1465-1476. PubMed ID: 31042816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amorphization of sugar hydrates upon milling.
    Willart JF; Dujardin N; Dudognon E; Danède F; Descamps M
    Carbohydr Res; 2010 Jul; 345(11):1613-6. PubMed ID: 20494339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De- and rehydration behavior of alpha,alpha-trehalose dihydrate under humidity-controlled atmospheres.
    Furuki T; Kishi A; Sakurai M
    Carbohydr Res; 2005 Feb; 340(3):429-38. PubMed ID: 15680598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration-temperature dependencies of structural relaxation time in trehalose-water solutions by brillouin inelastic UV scattering.
    Di Fonzo S; Masciovecchio C; Bencivenga F; Gessini A; Fioretto D; Comez L; Morresi A; Gallina ME; De Giacomo O; Cesàro A
    J Phys Chem A; 2007 Dec; 111(49):12577-83. PubMed ID: 17997535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization and mobility of water in amorphous and crystalline trehalose.
    Kilburn D; Townrow S; Meunier V; Richardson R; Alam A; Ubbink J
    Nat Mater; 2006 Aug; 5(8):632-5. PubMed ID: 16845422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the phase transitions of trehalose dihydrate on heating and subsequent dehydration.
    Taylor LS; York P
    J Pharm Sci; 1998 Mar; 87(3):347-55. PubMed ID: 9523989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydration of trehalose dihydrate at low relative humidity and ambient temperature.
    Jones MD; Hooton JC; Dawson ML; Ferrie AR; Price R
    Int J Pharm; 2006 Apr; 313(1-2):87-98. PubMed ID: 16504430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars.
    Schebor C; Mazzobre MF; Buera Mdel P
    Carbohydr Res; 2010 Jan; 345(2):303-8. PubMed ID: 19962131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and structural behavior of milk fat. 3. Influence of cooling rate and droplet size on cream crystallization.
    Lopez C; Bourgaux C; Lesieur P; Bernadou S; Keller G; Ollivon M
    J Colloid Interface Sci; 2002 Oct; 254(1):64-78. PubMed ID: 12702426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trehalose amorphization and recrystallization.
    Sussich F; Cesàro A
    Carbohydr Res; 2008 Oct; 343(15):2667-74. PubMed ID: 18768170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concomitant dehydration mechanisms in single crystals of alpha,alpha-trehalose.
    Dupray V; Berton B; Ossart S; Atmani H; Petit MN; Coquerel G
    Carbohydr Res; 2009 Dec; 344(18):2539-46. PubMed ID: 19875105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure in dehydrated trehalose dihydrate--evaluation of the concept of partial crystallinity.
    Rani M; Govindarajan R; Surana R; Suryanarayanan R
    Pharm Res; 2006 Oct; 23(10):2356-67. PubMed ID: 16927180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Heat-induced structural transition of alpha-crystallin in the eye lens tissue observed by small-angle X-ray scattering].
    Krivandin AV
    Biofizika; 2009; 54(4):638-40. PubMed ID: 19795784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Particle size dependent molecular rearrangements during the dehydration of trehalose dihydrate in situ FT-Raman spectroscopy.
    Taylor LS; Williams AC; York P
    Pharm Res; 1998 Aug; 15(8):1207-14. PubMed ID: 9706051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Wide-angle x-ray scattering comparison of the structure of crystalline cytochrome c and cytochrome c in solution].
    Timchenko AA; Denesiuk AI; Fedorov BA
    Biofizika; 1981; 26(1):32-6. PubMed ID: 6261840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.